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Abstract

We introduce a real-time capable algorithm which estimates the long-term signal to noise ratio (SNR) of the speech in multi-talker

babble noise. In real-time applications, long-term SNR is calculated over a sufficiently long moving frame of the noisy speech ending

at the current time. The algorithm performs the real-time long-term SNR estimation by averaging “speech-likeness” values of multiple

consecutive short-frames of the noisy speech which collectively form a long-frame with an adaptive length. The algorithm is calibrated

to be insensitive to short-term fluctuations and transient changes in speech or noise level. However, it quickly responds to non-transient

changes in long-term SNR by adjusting the duration of the long-frame on which the long-term SNR is measured. This ability is obtained

by employing an event detector and adaptive frame duration. The event detector identifies non-transient changes of the long-term SNR

and optimizes the duration of the long-frame accordingly. The algorithm was trained and tested for randomly generated speech samples

corrupted with multi-talker babble. In addition to its ability to provide an adaptive long-term SNR estimation in a dynamic noisy situa-

tion, the evaluation results show that the algorithm outperforms the existing overall SNR estimation methods in multi-talker babble

over a wide range of number of talkers and SNRs. The relatively low computational cost and the ability to update the estimated long-

term SNR several times per second make this algorithm capable of operating in real-time speech processing applications.

� 2019 Elsevier Ltd. All rights reserved.
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1. Introduction

It is essential to have knowledge about the presence and intensity of target speech and background noise when

analyzing different segments of a noisy speech sample. Hence, estimating the Signal-to-Noise Ratio (SNR) of noisy

speech signals has multiple applications in speech processing, enhancement and recognition (e.g., Ephraim and

Malah, 1985; Hirsch and Ehricher, 1995; Morales et al., 2011; Scalart and Filho, 1996; Sohn et al., 1999; Tchorz
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and Kollmeier, 2003). SNR estimation has been the subject of many previous studies and different categories of SNR

estimation algorithms have been introduced for different applications.

One category which has many applications in real time denoising algorithms is the “instantaneous short-term

SNR estimation”. These algorithms estimate the SNR of relatively short frames of the noisy speech. In recent years,

many instantaneous SNR estimation algorithms have been proposed (e.g., Plapous et al., 2006; Elshamy et al., 2017;

Sun et al., 2014; Lun and Hsung, 2010). Many of these algorithms use a variety of techniques to improve earlier

well-known works including decision-directed (DD) algorithm (Ephraim and Malah, 1984), spectral subtraction

(Lim and Oppenheim, 1979), noise power spectral density estimation (Martin, 2001) and noisy speech sub-banding

(e.g., Nemer et al., 1999). These algorithms are designed to be highly sensitive to the short-term variations of the sig-

nal and noise. Even with a relatively fixed target speech and background noise level, instantaneous short-term SNR

estimation methods are likely to yield highly variant SNR values for short segments of the noisy speech. This is

mainly due to the inherent temporal fluctuations in both the target speech and background noise. Even though it may

be desirable to track these short-term activities for certain denoising applications, instantaneous short-term SNR esti-

mation provides very little insight into the long terms variations of speech and noise. Moreover, these algorithms

usually assume a stationary or quasi-stationary behavior for the background noise. Hence de-noising techniques

which employ these algorithms generally have a lower performance when the background noise is a non-stationary

signal such as multi-talker babble noise (Hu and Loizou, 2007).

Another category of SNR estimation algorithms estimates the overall SNR of the noisy speech over the entire noisy

speech. We will refer to this category as “Overall SNR estimation” algorithms. Kim and Stern (2008) used maximum

likelihood estimation to find the shaping parameter of a Gamma distribution which models the noisy speech. The

obtained value of the shaping parameter was used to estimate the overall SNR of the noisy speech. This algorithm,

which assumes the foreground speech and the background noise can be modeled by a Gamma and a Gaussian distribu-

tion respectively, performs relatively well in white noise and music background. Papadopoulos et al. (2016) employed

features which are sensitive to the presence of speech in noise to estimate the energy of speech and noise in different

regions of the noisy speech. These energy values were used to train noise dependent regression models which provide

an estimation of the overall SNR. The algorithm was trained with various noise types and different noise-specific

regression models were obtained. In the case of unknown noise type, a Deep Neural Network (DNN) using Mel-

Frequency Cepstral Coefficients (MFCCs) was trained to determine the type of the noise. Narayanan and Wang (2012)

used ideal binary masking to labels time/frequency units of the noisy speech as being either speech or noise dominated

and then estimated the long-term SNR based on the energy of each class. These algorithms are less susceptible to fluc-

tuation of the SNR over short intervals. However, because these algorithms need the entire noisy signal, they are inap-

propriate for real-time applications. Like the first category, these algorithms usually have a lower accuracy when the

background noise is non-stationary (Narayanan and Wang 2012).

We developed a new approach to estimate “Real-Time Long-Term SNR” which is a real-time measure of SNR

that is independent of the short-term speech or noise activity. This SNR estimate should only change when there is a

non-transient change in the intensity of speech or background noise. In order to achieve this, SNR should be mea-

sured over a sufficiently long moving-frame ending at the current point in time. In this work, we developed and eval-

uated the “Adaptive Long-Term SNR estimation algorithm” (ALTIS) which has the following properties:

- ALTIS estimates the long-term SNR which is estimated over longer frames of the noisy speech than instantaneous
short-term SNR estimation methods. Using longer frames reduces the sensitivity of the SNR estimation to short-

term speech activity.
-
 ALTIS processes real-time signals in short frames and estimates the long-term SNR over a moving long-frame

with an adaptive duration which consists of multiple consecutive short frames. This moving long-frame ends at

the current time and has an adaptive duration which is determined based on the events (i.e., non-transient varia-

tions of speech or noise intensity) in the noisy speech detected by an event detector. ALTIS updates the estimated

long-term SNR after receiving every new short frame from the input.
-
 ALTIS is designed to perform well with multi-talker babble. Multi-talker babble is one of the most challenging

non-stationary noises which is very common place in real life situations.

The estimated long-term SNR is highly affected by the duration of the long-frame over which the SNR is calculated.

To have a more accurate estimation, the long-frame must be sufficiently long such that the short-term speech activities
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Fig. 1. The results of an ideal SNR estimator with frame lengths of 2 and 10 s. The noisy speech consists of 50 s of noisy speech with overall

SNR = 0 dB and 50 s of noisy speech with overall SNR = 10 dB and the background noise is 10 talker babble (left). Standard deviation of the esti-

mated long-term SNR in dB as a function of the long-frame duration in seconds in speech samples corrupted by 10 talker babble (right).
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including speech gaps and naturally high or low energy phonemes of the speech do not affect the estimated long-term

SNR. Even with an ideal SNR estimator (i.e., assuming prior knowledge of clean speech and noise) and a noisy speech

with a fixed long-term SNR, using a “long-frame” with an insufficient duration would lead to an estimated SNR that oscil-

lates around the actual long-term SNR. Increasing the long-frame length will decrease the variance of this oscillation (see

Fig. 1 � right). Conversely, choosing overly-long durations for a long-frame will produce long-term SNR estimations

that would be insensitive to the changes in the long-term SNR within the long-frames. Furthermore, longer frame dura-

tions lead to a slower response to changes in SNR as shown in Fig. 1 (left). To minimize the trade-off between detection

accuracy and detection agility, ALTIS uses an adaptive long-frame with a duration that varies based on the noise situa-

tion.

The motivation for the development of ALTIS was for implementation in SEDA, which is a real-time wavelet based

babble noise reduction algorithm developed by Soleymani et al. (2018). However, the ALTIS algorithm is inherently

independent of SEDA and is likely to be useful for other similar applications. We therefore have documented and eval-

uated ALTIS independently. SEDA uses the long-term SNR estimation to determine a priori probability of observing

speech or babble dominated short frames, as well as to adjust the denoising aggressiveness in a wavelet domain.
2. Algorithm

Like most real-time algorithms, the proposed algorithm receives incoming short-frames (each a few tens of milli-

seconds in duration) of noisy speech as input. First, several features which are sensitive to the level of noise and

speech are extracted from every incoming short-frame of the noisy input signal. Then the algorithm employs a DNN

to estimate the “speech-likeness” value of each short-frame of the incoming signal based on its normalized extracted

features. Then an event detector uses the speech-likeness values of the last few short-frames to detect any possible

transitions in the long-term SNR. Subsequently, based on the results of the event detector, the algorithm determines

an optimal number of consecutive short frames to form a long-frame over which the long-term SNR is estimated.

Finally, a regression model is used to estimate the SNR of the long-frame (i.e., long-term SNR) based on the mean

speech-likeness value of its short-frames. Fig. 2 shows the block diagram of the algorithm. More details about differ-

ent components of the algorithm are given in following sub-sections.

2.1. Feature extraction

For every incoming short-frame, a feature vector of Fi ¼ ½ f1; f2; . . . f16� consisting of 16 features is formed. The

selected features consist of 12 MFCC coefficients and four additional features taken from Soleymani et al. (2018) that

are sensitive to the level of noise in speech. Considering the decreased robustness of MFCC features in noise, adding

these four features, significantly increases the performance of the classifier. The selected features are as follows:
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- MFCC Features ( f1 to f12):
To obtain MFCC coefficients for an incoming short-frame, first a pre-emphasizing high-pass filtering is per-

formed to reduce the concentration of energy in lower frequencies. In this work we used a first order pre-emphasis

filter with a filter coefficient a ¼ 0:97 (Young et al., 2006). Then we used a Hamming window to enhance the feature

quality by reducing the effect of the discontinuities at the borders of the frame. In this work, we selected a 22 channel

Mel-scale triangular filter bank which covers frequencies from 200 Hz to 6000 Hz. Usually MFCC values have a

wide range of variance which makes it difficult to compare them. To solve this problem, we use a Cepstral Lifter as

follows (Young et al., 2006):

c0i ¼ 1þ L

2
sin

pi

L

� �
ci ð1Þ

where L is cepstral sine lifter parameter (we used L ¼ 22), ci and c0i are the cepstral coefficients before and after lift-

ing respectively. Finally, f1 to f12 were obtained as: fi ¼ c0i ði ¼ 1; 2; . . . 12Þ. Please note that we do not use 0th Mel-

Frequency Cepstral Coefficient c00 in this work.

- Amplitude Entropy ( f13):
In developing the SEDA algorithm (Soleymani et al., 2018), we determined that the amplitude entropy of short-

frames of noisy speech decreases by increasing the noise level in the short-frame. For a short-frame denoted with S,

the value of feature f13 can be obtained as follows:

f13 ¼�1

l

XNb

k ¼ 1
h kð Þlog10 h kð Þ

l

� �
ð2Þ

Where l is the short-frame’s length, h is the amplitude histogram of S and Nb is the number of bins. The main param-

eter that affects the quality of this feature is the histogram bin width (bw). To find the value of bw that maximizes

the quality of this feature we used the Fisher score (Tang et al., 2014; Gu et al., 2012; Duda et al., 2001) that is

widely used to estimate the quality of features and can be calculated as follows:
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PCn

k ¼ 1 nk mk�mð Þ2PCn

j¼ 1 nks
2
k

ð3Þ

where Cn is the number of classes, m and mk are the mean values of the feature in all classes and in class k, respectively,

sk is the standard deviation of the feature in class k and nk is the number of samples in class k. When f13 is calculated for

speech in multi-talker babble, the histogram bin width which maximizes the Fisher quality score of this feature is

bw ¼ 0:05M where M is the long-term maximum of the noisy amplitude (Soleymani et al., 2018). Note that l is a con-

stant and does not affect the feature quality. Hence, we can simplify (2) to: f13 ¼�PNb

k¼1 hðkÞlog10ðhðkÞÞ.

- post-thresholding to pre-thresholding RMS ratio ( f14):
Hard threshold of a noisy speech frame S ¼ ½s1; s2; . . . : sl; �; with threshold level t can be defined as:

TðS; tÞ ¼fst1; st2; : : : ; stl g where: sti ¼
0; jsij�t

si; jsij> t

�
.

Using hard thresholding, the value of f14 for a noisy speech short-frame S can be obtained as follows:

f14 ¼
k T S ; 1

l
K k S k 1

� � k 2

k S k 2

ð4Þ

Our experiments show that if the thresholding level in (4) is selected carefully (i.e., above the noise base level),

samples originating from the target speech are more likely to survive the hard thresholding. Hence the value of this

feature increases by increasing the signal to noise ratio in the noisy speech frame S. Selecting K = 3 maximizes the

Fisher quality score of this feature. (Soleymani et al., 2018).

- Temporal Envelope Variance ( f15):
For a short frame S ¼ ½s1; s2; . . . :sl; � the envelope eS can be obtained as follows:

eS nð Þ ¼ 1

le

Xle
2
�1

k ¼�le
2

����S k þ nhð Þ
����w kð Þ ð5Þ

where le is the length of the moving average window w, and h is the hop value. The value of f15 can be calculated as:

f15 ¼ 1

nw

Xnw

n¼1

eS nð Þ
max eSð Þ�

1

nw

Xnw

n¼1

eS nð Þ
max eSð Þ

� �2

ð6Þ

where nw is the total number of windows in a short-frame. In this work, we used non-overlapping rectangular win-

dows with h = le ¼ 50 to maximize the feature’s quality score. The value of f15 decreases with increasing the noise

(Soleymani et al., 2018).

- Envelope Mean-Crossing rate ( f16):
Using (5) the value of f16 can be calculated as follows:

f16 ¼ 1

2nw

Xnw

k¼2

����sign eS kð Þ� 1

nw

Xnw

n¼1
eS nð Þ

� �
�sign eS k�1ð Þ� 1

nw

Xnw

n¼1
eS nð Þ

� ����� ð7Þ

where sign(x) is the sign function of x. The value of this feature increases with increasing the noise.

Features numbered 13�16 were previously used for classification of speech dominated and noise dominated

frames in SEDA. These four features are directly extracted from the incoming short-frames of the signal before pre-

emphasizing or applying the Hamming window. For a further discussion of using each of these features on noisy

speech frames, please see Soleymani et al. (2018).
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2.2. DNN based speech-noise classifier

At this stage, using a DNN we design a classifier which can accurately discriminate single talker (i.e., clean) speech

and multi-talker babble (4 to 20 talkers). The DNN was trained with short-frames (frame duration = 128ms) of clean

speech and multi-talker babble. We used a database 2100 sentences, including 720 male speakers and 720 female

speaker IEEE standard sentences (IEEE Subcommittee, 1969), 260 male speaker HINT sentences (Nilsson et al., 1994)

and 400 male speaker SPIN sentences (Bilger et al., 1984) to create clean speech and multi-talker babble. Babble sam-

ples were generated with a random number (between 4 and 20) of sentences spoken by either or both genders.

Human speech naturally has low-energy gaps which consist of silence or background noise. We used a simple

energy-based gap detector to identify and remove these gaps from the single talker training material. This prevents

the classifier from being trained by the non-speech gaps labeled as speech. We created one hour of randomly gener-

ated multi-talker babble and one hour of clean speech for training the classifier (i.e., 28,125 short frames for each

class). In this work we used the sampling rate of 16,000 samples per second (i.e., frame length of 2048 samples).

After creating and labeling the babble and clean speech frames, we extracted the previously discussed features

from each frame and created a training dataset. The obtained feature matrixMtrain ¼ ðfijÞns�nf
, consisted of ns feature

vectors (i.e., number of short-frames) with nf ¼ 16 features per vector where, fij is the jth feature of the ith short

frame. Another feature matrix Mtest was created for testing the classifier. To ensure that the classifier is tested with

unseen data, multi-talker babble and clean speech samples which were used for training and testing the classifier

were generated from different sentence lists with different speakers.

Because the cepstral liftering described in Section 2.1 is only applied to the original MFCC features, at this stage

we perform a mean and variance normalization on final DNN input features including 12 selected MFCCs and four

additional non-MFCC features. The values of the feature matrix Mtrain were normalized as follows:

bMtrain ¼ bf ij� 	
ns�nf

where; bf ij ¼ fij� mj

sj

;mj ¼
1

ns

Xns

i¼1
fij; sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ns

Xns

i¼1
fij�mj

� �2r
ð8Þ

The same normalization process was repeated for test feature matrix Mtest. Note that the test feature matrix was

normalized under real-time assumption in which feature means and variances used for normalization of each feature

vector (i.e., each row ofMtest) were calculated based on the previous feature vectors and were updated after receiving

a new short-frame. Then each of these normalized test feature vectors were separately used as an input to the DNN

based classifier. Using the normalized feature matrix bMtrain, we trained a Deep Neural Network (DNN) with 16
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inputs (number of features per frame), two hidden layers each with 16 nodes and two outputs (number of classes).

DNN was trained using the Scaled Conjugate Gradient Algorithm (Moller 1993).

The number of epochs in training is the number of times that the entire training data set is presented to the neural

network. The neural network is updated after each epoch. The classifier performance with the number of epochs that

minimizes the cross-entropy validation error (i.e., 208) was calculated (left panel Fig. 3). Performance of the classi-

fier is presented in a confusion matrix (right panel Fig. 3). Clean speech, multi-talker babble and total detection per-

formances of the classifier are 98.1%, 96.7% and 97.4%, respectively. The additional improvement provided by

increasing the number of layers or nodes was not large enough to justify the corresponding additional computational

requirements.
2.3. “Speech-likeness” estimation

The classifier described in Section 2.2 outputs a value 0� pi� 1 which is a measure of the likelihood that the

frame is either clean speech or multi-talker babble. The higher the value of pi, the more likely the frame is clean

speech. However, if a frame containing combined single-talker target speech and background multi-talker babble is

presented to the classifier, the appropriate interpretation of the output value of pi will be different. Because we

already know that the frame is neither clean speech nor noise alone, pi can be interpreted as an estimate of the simi-

larity of the frame to clean speech. In this case, we refer to this value as a “speech-likeness” estimation. Our experi-

ments demonstrate that the average pi value of a sufficiently large number of consecutive short-frames of the noisy

speech can be mapped to an accurate estimate of the SNR value of the long-frame which is the result of concatena-

tion of the above mentioned consecutive short-frames.

As mentioned in the introduction, in a real-time application, the estimation of the long-term SNR can be defined

as measuring the SNR over a long-frame with the duration of tL which ends at the current time (ti) and starts at

ti�tL. To minimize the latency, audio signals in real time algorithms are usually received and processed in short

frames (i.e., a few milliseconds in duration). Assuming Si is the latest short-frame of the noisy speech which has

been received from the input at time ti, we can define the long-frame Fi
L as the concatenation of the last N short-

frames as follows:

Fi
L ¼ Si� N�1ð Þ; Si� N�2ð Þ . . . ; Si�1; Si

� �
;N ¼ tL

tS
ð9Þ

where Fi
L is the long frame of the noisy speech which ends at ti, and tL and tS are durations of the long and short

frames respectively. For the long frame of Fi
L we define array P

i
L and its mean mi

P as follows:

Pi
L ¼ pi� N�1ð Þ; pi� N�2ð Þ . . . ; pi�1; pi

� �
;mi

P ¼ 1

N

XN�1
k¼0

pi�k ð10Þ

where pi is the “speech-likeness” value of Si obtained from the classifier. Our experiments show that if N is suffi-

ciently large, the value of mi
P provides an accurate estimate of the SNR in the long-frame Fi

L. Assuming a fixed dura-

tion for long-frames, in the event of receiving a new frame of Siþ1, the new Piþ1
L can be created by adding the

speech-likeness value of the new short frame to the end of the old Pi
L and discarding the speech-likeness value of the

oldest short frame from its beginning. The mPL for the new long frame will be simply calculated as:

miþ1
P ¼ Nmi

P þ piþ1�pi� N�1ð Þ
N

ð11Þ

We do not need to buffer the entire audio signal within the long-frame to compute its SNR. The only necessary

information is the array of PL which contains the speech-likeness values for the last N short-frames. We will discuss

the process of estimating the long-term SNR from mP in the next section. In practice, we use a long-frame with a

length that will vary based on the events in the noisy speech. A modified version of Eq. (11) for an adaptive long-

frame will be given in Section 2.5.

Fig. 4 shows the scatter plots, means and standard deviations of mP values for a large number of long-frames of

noisy speech with SNR values ranging from ¡10 dB to 20 dB for two different long-frame durations. As can be

seen, the standard deviation of the mP values decrease with an increase in the duration of the long-frame and as we

will discuss, this will lead to a more accurate SNR estimation.
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2.4. Long-term SNR estimation using regression models

Our previous experiments showed that the value of mP changes consistently as a function of the long-term SNR.

To estimate the value of the long-term SNR of a long-frame from the value of its mP we need a regression model

which describes the relationship between the two values. To obtain this regression model, in this work, we used Ezy-

Fit toolbox (Moisy, 2016) that is designed based on a variation of the Nelder-Mead method (Nelder and Mead,

1965). This method uses a numerical non-linear optimization algorithm to minimize the differences between the esti-

mated model and the distribution of the actual mP values with respect to different parameters of the model (Mathews

and Fink, 2004; Lagarias et al., 1998). Our experiments suggest that the resulting regression models are independent

of the long-frame duration but vary with the number of talkers in babble. Hence different models were obtained for

different numbers of talkers in babble (grey curves in Fig. 6).

Our experiments show that for different numbers of talkers, the resulting functions are always well approximated

by the sum of two, three or four Gaussian functions with different parameters. For example, the blue dashed line in

Fig. 5 and Eq. (12) show the Gaussian function which is the best fit for the average mP values of long-frames of noisy

speech corrupted with 10 talker babble.

mP snrð Þ ¼ 1:276e
� snr�9:268ð Þ2

908:147 �1:026e
� snrþ0:774ð Þ2

381:874 ð12Þ
The problem with having different regression models for different number of talkers is that in practice the number

of talkers in babble is not always known. To solve this problem, we create a talker independent regression model

which is estimated using a large number of long, noisy speech frames with a randomly selected number of talkers

(between 4 and 20).

mP snrð Þ ¼ 0:051e

� snr þ 87:305ð Þ2
12602 þ 0:457e

� snr�11:914ð Þ2
103:059 ; snr�5dB

1:9363e

�ðsnr þ 22:358Þ2
3685:3 þ 1:8723e

�ðsnr þ 9:97Þ2
574:673 ; snr> 5dB

8>>><
>>>: ð13Þ

The resulting “number of talker independent” model will be approximately the average of the individual models

for different number of talkers. Eq. (13) and the red dashed line in Fig. 6 show the best fit function for the relation-

ship between mP and long-term SNR of noisy speech, given the number of talkers in babble is unknown. As expected
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using the “number of talker independent” model will introduce some SNR estimation bias mainly when the number

of talkers is very small (i.e., less than 6 talkers) and generally performs slightly poorer than the “number of talker

specific model”. Using the obtained regression models, the estimated SNR value of a long-frame can be found

quickly based on its mP. Because the resulting regression models do not have a closed form solution for SNR, we

use a lookup table search to find the estimated value of SNR. Note that because in realistic situations the SNR value

varies within a relatively narrow range (e.g., between ¡10 and +20) and it is estimated with limited precision (one

or two decimal places) the lookup table of mP values for all possible estimated SNR values is not very large.
2.5. Event detector and adaptive long-frame

As discussed in previous sections, an increased duration of a long-frame (i.e., the more short-frames used to estimate

the long-frame average speech-likeness value mP) reduces the variance of mP and therefore the improves the accuracy

of the SNR estimation. However, in real-time applications, when the actual long-term SNR changes, using very long

frames for long-term SNR estimation leads to long and undesirable estimation transition times (see Fig. 8 plot 2).

If the long-term SNR of noisy speech changes from one value (SNR1) to another (SNR2) and the transition starts at

the time t1 and ends at the time t2, the transition time will be tt ¼ t2� t1. When the long-term SNR changes, we

expect the estimated long-term SNR to change accordingly and we define the “estimation transition time” as the

duration that the estimated long-term SNR changes from one stable value (»SNR1) to another (»SNR2). Although

both true and estimation transition times are caused by the change of SNR, the estimation transition time is always

longer than the true transition time. It is desirable for estimation transition times to be as close as possible to true

transition times for applications such as de-noising.

The difference between the true and estimation transition time decreases with decreasing duration of the long-frame.

Fig. 7 shows the effect of long-term frame duration on estimation transition time. As seen in this figure at t< t1
before the SNR changes, the long frame (marked with 1) contains only the noisy speech with long-term SNR value

of SNR1. Exactly at the time t ¼ t1 the actual SNR transition begins and continues until t ¼ t1 þ tt. The estimation

transition period also starts at t ¼ t1 when the actual SNR transition begins but it continuous until t ¼ t1 þ tt þ tL
when the entire transition period is out of the long-term frame (marked with 6). As illustrated in Fig. 7, during the

estimation transition period, the long-term frame (marked with 3, 4, 5) contains noisy signals with various overall
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SNR values (i.e., SNR1, SNR2 and the momentarily changing SNR of actual transition period). Because the duration

of each portion (SNR1, SNR2 and actual transition) in the long-term frame constantly changes during this period

(from stages 2 to stage 6 in Fig. 7), the overall detected SNR also is subject to change until the entire long-term frame

is filled with noisy signal with long-term SNR value of SNR2 and this will happen at t ¼ t1 þ tt þ tL . Hence the total

estimation transition time will be tE ¼ tL þ tt.

To reduce the estimation transition time, we should use a shorter long-frame when the actual transition happens.

To take advantage of higher detection accuracy of longer frames and a shorter transition time of shorter frames we

use an event detector to adjust the duration of the long frame in different situations. First, we should set a minimum

and a maximum duration for the long-frame. As shown in Fig. 1 (right plot), even an ideal long-term SNR estimate

with relatively short long-frames (i.e., shorter than 5 s) yields a highly variant result in a fixed long-term SNR.

Hence, we select the lower limit to be tLmin
¼ 5:12 s which is 40 times longer than selected duration of the short-

frames (128 ms). We select the upper limit to be tLmax ¼ 48 s which is 375 times longer than selected duration of the

short frames (128 ms). The duration of the adaptive long-frame will change between these two values as below:

Nmin ¼ tLmin
ts

¼ 5120 ms

128 ms
¼ 40;Nmax ¼ tLmax

ts
¼ 48000 ms

128 ms
¼ 375;Nmin � N � Nmax ð14Þ

where Nmin, Nmax, N are the number of short-frames (128 ms) in long-frames with minimum, maximum and adjust-

able durations respectively.

We determine the adjustable long-frame duration by monitoring the noisy signal’s behavior and detecting changes

in the long-term SNR. As long as the long-term SNR is constant and no event is detected, the long-frame duration

gradually increases. The long-frame duration will stop increasing when it reaches its maximum level of tLmax . In the

case of detecting a new event, the long-frame’s duration immediately drops to the minimum level of tLmin to reduce

the estimation transition time. If the actual SNR reaches a new stable level after the change, the long frame duration

will start to increase again.

We define an event as a change in the long-term SNR of the noisy speech from one stable level to another. This

change should be in one direction (i.e., up or down, and not just a temporary increase in variability) and must remain

at the new SNR for a certain duration before the long-term SNR changes again. Short term oscillatory variations of

the SNR (i.e., instantaneous SNR) around one stable level which usually are the result of natural transient fluctua-

tions in speech or babble activity levels should not be detected as event.

We define an event window to have a duration of te � 2tLmin . This event window is updated once every ts (i.e., the

duration of the short-frame) by adding a newly received short frame to the end of the event window and discarding

the oldest short-frame which keeps the length of the event window constant. Now we divide the event window into

two equally long parts with the duration of te
2
� tLmin and calculate the absolute value of the difference between mean

speech-likeness values of the two parts. A significant difference between the mean speech-likeness values of the two

parts is interpreted as a change of long-term SNR and therefore is considered a new event. The length of each part

(i.e., each half of the event window) should be long enough (i.e., equal or longer than minimum window length) to

ensure that the detected difference is not the result of natural fluctuation of speech and babble.

In practice, event detection does not impose any extra computational cost to the algorithm. All the speech-like-

ness values required for the event detection have been already calculated for long-term SNR detection and we can

use the already available data for the event detection. The mean speech-likeness difference between the two halves

of the event-window can be calculated as:

De
m ¼

PNe
2
�1

k¼0 pi�k �
PNe�1

k¼ Ne
2

pi�k

Ne

������
������ ð15Þ

where De
m is the mean speech-likeness difference between the two halves of the event-window, Ne ¼ te

ts
is the number

of short-frames in the event-window and Pe ¼ ½pi; pi�1 . . . ; pi�ðNe�1Þ� is the speech-likeness array of the event-window

at ti. Because speech-likeness values vary between zero and one, we will always have 0� De
m � 1.

If the current time is ti, the first half of the event window contains the speech likeness values of short-frames

between ti� 2ttr and ti� ttr and the second half contains the speech likeness values of short-frames between ti� ttr
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and ti. If the long-term SNRs of these two consecutive time frames are different, the values of De
m will become

greater than an event threshold value of 0< a< 1 and a new event will be detected.

The value of a should be selected carefully so that the natural variances of De
m are not detected as a new event.

One way to choose a is to measure natural variance of De
m in constant long-term SNR and set: a � sðDe

mÞ. Our
experiments show that the added mean absolute error due to the false positive event detection, is less than the added

error resulting from a false negative event detection. Hence, we should deliberately tune the value of a to make the

false negative detections of an event less likely than the false positive detection. Our selected value is a ¼ 0:2.
Assuming Nold is the long-frame length (i.e., number of short-frames in the long-frame) at ti, using the event

detector we calculate Nnew which is the number of short-frames in the long-frame upon receiving of the next short

frame (at ti + ts) as:

Nnew ¼
Nmax : De

m <a ; Nold ¼ Nmax

Nold þ 1 : De
m <a ;

����Nold <Nmax

Nmin : De
m�a

8>>><
>>>: ð16Þ

where Nmin and Nmax are the minimum and maximum number of short-frames in adaptive long-frame of the noisy

speech, respectively (see Eq. (14)).

Using adjustable long-frame duration, we can update Eq. (11) which calculates the value of miþ1
P based on mi

P. For

a long-frame Fi
L we can write:

mi
P ¼ 1

N

XNold�1
k¼0

pi�k;Pi
L ¼ pi� Nold�1ð Þ; pi� Nold�2ð Þ . . . ; pi�1; pi

� �
where Pi

L and mi
P and Nold are the speech-likeness array of Fi

L, its average and its length (number of short-frames in

the long-frame) respectively. The speech likeness array of the next long-frame Fiþ1
L is denoted with Piþ1

L and can be

written as:

Piþ1
L ¼ piþ1� Nnew�1ð Þ; piþ1� Nnew�2ð Þ . . . ; pi; piþ1

� �
where Nnew is the number of short-frames in Fiþ1

L . Having mi
P the value of miþ1

P for adjustable long-frame duration,

can be obtained as follows:

miþ1
PL ¼

Nmaxm
i
PL þ piþ1�pi� Nmax�1ð Þ

Nmax

:

����Nnew ¼ Nold ¼ Nmax

Nminm
i
PL þ piþ1�pi� Nmin�1ð Þ

Nmin

:

����Nnew ¼ Nold ¼ Nmin

Noldm
i
PL þ piþ1

Nnew

:

����Nnew ¼ Nold þ 1

1

Nmin

XNmin�2
k¼�1 pi�k :

����Nnew ¼ Nmin <Nold

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð17Þ

Using Eq. (17), the value of mPL can be updated after receiving a new short-frame. An estimated long-term SNR

will be obtained for every updated value of mPL using the regression models discussed in Section 2.4. Fig. 8 shows

the benefit of using an adjustable long-frame relative to a fixed length long-frame. The center panel of Fig. 8 illus-

trates that a long frame with a larger duration (e.g., 35 s) yields accurate results but is slow to respond to changes in

SNR. The right panel of Fig. 8 illustrates that a long frame with a shorter duration (e.g., 7 s) yields fast response to

changes in SNR but is inaccurate. However, the left panel of Fig. 8 shows that using adaptive frame-length simulta-

neously reduces the estimation transition time and increases the accuracy.
3. Performance evaluation

We have evaluated the following two variations of the ALTIS algorithm:



0 100 200 300 400
-2

0

2

4

6

8

10

12

14

Time (s)

)
Bd(

R
N

S

Adaptive Long Frame

0 100 200 300 400
-2

0

2

4

6

8

10

12

14

Time (s)

S
N

R
 (d

B
)

Fixed Long Frame ( 35 s)

0 100 200 300 400
-2

0

2

4

6

8

10

12

14

Time (s)

S
N

R
 (d

B
)

Fixed Long Frame ( 7 s)

Fig. 8. The actual (dashed blue lines) and detected long-term SNR (red line) in a dynamic SNR situation using the algorithm. The left plot shows

the detection results with an adaptive long-frame duration. The center plot shows detection results with a fixed long-frame duration of ts ¼ 35 ðsÞ
which is accurate but slow to adjust. The right plot shows detection results with a fixed long-frame duration of ts ¼ 7 ðsÞ which is fast to adjust but
inaccurate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

R. Soleymani et al. / Computer Speech & Language 58 (2019) 231�246 243
I ALTIS using “number of talker independent” regression models for unknown number of talkers in babble
(ALTIS-NTI).
II
 ALTIS using “number of talker specific” regression models for known number of talkers in babble (ALTIS-

NTS).
First, each variation of the algorithm was tested at fixed SNRs. Second, each variation was tested in a dynamic

SNR situation where the SNR randomly changed over time. All tests were performed using the real-time version of

ALTIS with 128 ms non-overlapping frames, meaning that the algorithm did not have access to the entire noisy

speech and received the noisy speech frame by frame, and estimated the long-term SNR once every 128 ms. The

selected metric to measure the ALTIS performance was “Mean Absolute Error” of the detected long-term SNR.

3.1. Performance in fixed SNR

Both variations of the ALTIS algorithm were tested with a fixed SNR. For the number of talker specific case,

regression models were selected based on the number of talkers in the background babble. In both cases the perfor-

mance was evaluated for noisy speech samples corrupted by multi-talker babble with all integer SNRs between

¡5 dB and 15 dB. For each SNR, 100 noisy speech samples were created, each having a duration of 100 s. To ensure

that speech and babble are evenly distributed throughout the 100 s duration of the noisy sample, each 100 s test sam-

ple was created by concatenation of 10 shorter segment with the same SNR (each segment 10 s long).

The number talkers were randomized (between 4 and 20 talkers) for each segment. The proportion of female and

male speakers in the babble was also randomized. Every 128 ms, the algorithm generates a new SNR estimation.

The mean absolute error between the known SNR and the estimated SNR was calculated for all of the 100 s test sam-

ples. The process was repeated for 21 SNR levels with 100 samples. Fig. 9 (top plot) shows the average mean abso-

lute error as a function of SNR for both ALTIS-NTI and ALTIS-NTS.

Our experiments show that the ALTIS performance quickly degrades in SNRs below ¡5 dB mainly due to the

fact that in those SNRs the babble is so strong that makes it difficult for the algorithm to differentiate between the tar-

get speech and background babble speeches.
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3.2. Performance in dynamic SNR

We repeated the evaluation tests in a dynamic babble situation where the actual long-term SNR changes with

time. In this case, for both conditions (known and unknown number of talkers) we created 100 noisy speech samples.

Each noisy speech sample was 5 min long consisting of 5 1-min long segments. Each segment had a randomly

selected SNR between ¡5 dB and 15 dB.

Additionally, ALTIS-NTI was evaluated with a dynamic SNR without the event detection and adaptive frame

length. Instead, a fixed frame length was implemented (either 6 or 20 s). The fixed frame-length variant was evalu-

ated to determine the effectiveness of the event-based adaptive frame-length implementation. As expected, test

results show that in dynamic noisy situation the performance is significantly better when an adaptive long-frame is

used (see Fig. 9 bottom plot).

To the best of our knowledge there is no other algorithm for “Adaptive Long-Term SNR” estimation with a

reported performance in multi-talker babble. Hence, we compared the performance of ALTIS with average results

of four existing “overall SNR” estimation methods in multi-talker babble extracted from Papadopoulos et al. (2016)

(see Fig. 9 bottom plot). While these algorithms perform well in many stationary noises, their performances in

multi-talker babble is generally poor and ALTIS outperforms all four algorithms when the background noise is

multi-talker babble.
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Note that ALTIS is capable of working in real-time and dynamic noisy conditions and updates its long-term SNR

estimate once every few tens of milliseconds whereas other existing overall SNR estimation algorithms only provide

one SNR estimate for an entire duration of an available noisy signal. In addition to ALTIS that is specifically trained

for multi-talker babble, in this evaluation, Regr. algorithm (Papadopoulos et al., 2016) also directly uses a babble-

specific regression model. This might partly explain the relatively large gap between the performances of ALTIS

and Regr with the other three general purpose algorithms (i.e., WADA, DNN and NIST). Moreover, the properties

of the babble noise used for testing the algorithms reported in Papadopoulos et al. (2016) are not sufficiently docu-

mented. Hence, it is unclear how appropriate the comparison between the test results of ALTIS and other existing

algorithms is.
4. Discussion

In the present manuscript, we introduced ALTIS which is an algorithm capable of providing an adaptive and real-

time estimate of the long-term SNR when speech is corrupted by multi-talker babble. It was specifically trained and

tested with multi-talker babble noise as the algorithm was originally designed to be implemented as a component of

the SEDA (Soleymani et al., 2018) babble noise reduction algorithm. However, ALTIS could be trained with other

types of noise and function independently or as a component of another algorithm. SEDA uses a priori information

provided by ALTIS to increase the performance of its babble/speech dominated short frame classifier (i.e., lower/

higher long-term SNR indicates a higher/lower probability of observing noise dominated short frames). It also uses

the estimation of the long-term SNR to adjust thresholding levels in a wavelet domain. Similar algorithms such as

those that classify noisy speech short frames (or time/frequency tiles) as being either speech or noise dominated

(e.g., algorithms that employ binary masking) or perform wavelet based denoising for non-stationary noise might

also benefit from the long-term SNR estimated by ALTIS.

The non-stationary nature of the multi-talker babble and its spectral similarities with the target speech makes it

one of the most challenging noises to separate from a target speaker. The high performance of ALTIS with multi-

talker babble suggests that it is likely to work well for other types of noise if ALTIS is retrained for the correspond-

ing noise types. If ALTIS is to be used for estimating the long-term SNR in other types of noise, first, it needs to be

trained separately for each type of noise. Then a noise type classifier should be employed to select the appropriate

model which is specifically trained for the detected type of noise.

ALTIS extracts features from incoming short-frames of the noisy speech with the duration of 128ms to estimate the

long-term SNR over long-frames consisting of multiple consecutive short-frames. The selected short frame duration

(i.e., 128 ms) is due to the fact that the classifier features exhibit suboptimal performance in shorter frames. Even using

50% overlapping short-frames, the chosen duration of 128 ms for short-frames will produce a minimum latency of

64ms. However, the 64ms latency of ALTIS will not be added to the latency of a real-time algorithm that uses ALTIS.

The real-time algorithm can maintain a latency well below 64ms while using ALTIS. This is due to the fact that ALTIS

and the corresponding real-time algorithm work in parallel and do not need to share the same frame duration. Further-

more, the 64ms latency inherent in ALTIS is unlikely to affect its usefulness for real-time applications, because ALTIS

measures the long-term SNR over a moving long-frame which is substantially longer than this latency. Possible

changes of SNR within this 64ms will not affect the measured SNR over a moving long-frame with a duration of

5.12�48 s. Hence, we can always safely assume that the output of ALTIS shows the long-term SNR at the current time

with a negligible error due to the 64ms delay. It is worth noting that although ALTIS was implemented and evaluated

with a 128ms frame duration, it could easily be trained and implemented with an alternate frame duration. However,

for the previously discussed reasons, it is unlikely that it would be beneficial to alter the frame duration.

ALTIS was trained and evaluated with sampling rate of 16,000 samples per second (i.e., frame length of 2048

samples) as this is the standard sampling rate for cochlear implant (CI) devices and this algorithm is intended to be

used in a cochlear implant speech enhancement algorithm. All classifier features were optimized for the sampling

rate of 16,000 samples per second. If ALTIS is to be used in other sampling rates, all classifier features, DDN classi-

fier and regression models need to be reoptimized and retrained.

ALTIS was evaluated with both known and unknown number of talkers. Knowing the number of talkers did improve

the mean absolute error of SNR estimation by 0.06 dB in a dynamic SNR situation. However, the mean absolute error of

the realistic condition of when the number of talkers is unknown was only 0.75 dB in a dynamic SNR situation.
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