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Roozbeh Soleymani, Ivan W. Selesnick, David M. Landsberger

A REAL-TIME ANDROID APP FOR MULTI-TALKER BABBLE NOISE REDUCTION.

Overview: Cochlear Implant users usually do not perform well in the presence of the background noise. Several

single-channel de-noising algorithms have been previously designed to address this problem. Nevertheless,
designing a de-noising algorithm which is capable of performing well for non-stationary noise (e.g. Multi-talker
babble) still remains a difficult task. The problem becomes more challenging if functioning in real-time and having a
low latency are added to the list of the algorithm’s desired properties. We have designed a low latency, real-time
babble noise reduction (SEDA2) which maintain these properties using devices with limited processing power such as
a smart phone. The algorithm has been tested on both CI users and NH subjects yielding promising results. The
algorithm consists of three main stages: 1- Classification 2-De-noising 3-Enhancement. We also have developed a
prototype app (Bab-El) for Android cell phones based on a slightly modified version of the SEDA2. The Bab-El app can
perform real time denoising on an ordinary android device with relatively low latency.

   

    

      

  

Input Output

Block Diagram

                                  

SEDA-2

1-Classification: The first stage classifies very short frames of noisy speech into either noise or speech dominated classes. The classifier employs a number of

novel features which maintain their robustness even for very short audio frames. Using weighted PCA the features are de-correlated and then using EM

(Expectation maximization) algorithm a GMM (Gaussian Mixture Model) is created for the classification.

GMM ∶ 𝐺 Ӻ 𝜇 , , 𝐶 =  ෍

 =1

 
  

  𝜋 
 
 𝐶 

𝑒{−
1
 [Ӻ𝑑−𝜇𝑖]

𝑇 𝐶𝑖
−1 Ӻ𝑑−𝜇𝑖 }

EM:     maximization 𝑙𝑜 𝑝 Ӻ 𝜇, 𝐶,  = σ𝑘=1
𝑁𝐹 𝑙𝑜 {σ

 =1

𝑁𝑔   𝒩 𝑓𝑘 𝜇 , 𝐶 }

𝜇 
  𝑤 =

σ𝑘 𝑝𝑖
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σ𝑘 𝑝𝑖
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𝑛𝑒𝑤 𝑇
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𝑘

Probability of each test feature set Ӻ belonging to a class 𝑋 :  𝑟 𝑚 𝑥𝑋[𝑃 Ӻ 𝑐𝑙 𝑠𝑠𝑋 𝑃 𝑐𝑙 𝑠𝑠𝑋 ], 𝑃 Ӻ 𝑐𝑙 𝑠𝑠𝑋 = σ =1
   𝒩 Ӻ 𝜇 , 𝐶 .

𝜇 , 𝐶 and   are obtained from the GMM. The values of 𝑃 𝑐𝑙 𝑠𝑠𝑁 and 𝑃 𝑐𝑙 𝑠𝑠𝑆
change as a function of the overall (long term) SNR. In the case of fast varying noisy

condition) we can assume 𝑃 𝑐𝑙 𝑠𝑠𝑁 = 𝑃 𝑐𝑙 𝑠𝑠𝑆 = 0.5. In the case of slowly varying

overall SNR, we can estimate more accurate values for 𝑃 𝑐𝑙 𝑠𝑠𝑁 and 𝑃 𝑐𝑙 𝑠𝑠𝑆 by

roughly estimating the global SNR. To estimate the global SNR we suggest a very simple

classifier which uses only two features (RMS ratio and envelope mean crossing)

calculated over the long frames of the noisy speech without de-correlating the features

with PCA. We use GMM with a single Gaussian per class for training the overall SNR

classifier .
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10 Talker Babble (5 Female, 5 Male)

6 Talker Babble (3 Female, 3 Male)

4 Talker Babble (2 Female, 2 Male)
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Parameters :  
J: Number of Sub-bands
r : Oversampling factor
Q : Q factor

Ӻ = Ӻ  𝑀 , Ӻ = 𝑇Ӻ , 𝐶 =
1
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Feature Parameters Formula 

Entropy 
Histogram bin 

width and    
number

ƒ𝒊
𝟏

=  σ𝑘=1
𝑁 𝑃 𝑘 𝑙𝑜 1 𝑃 𝑘 =  σ𝑘=1

𝑁 ℎ 𝑘

𝐿
𝑙𝑜 1  

ℎ 𝑘

𝐿
 ℎ: Amplitude histogram of   , 𝑃 𝑘 : Probability of the 

kth bin, N:Number of bins,  : Frame length. 

Post to pre thresholding RMS 
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1

𝐿
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𝑟𝑚𝑠 𝐹𝑖
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  1: 𝑙1 norm of the frame   .

Envelope Mean-Crossing Moving avg. 
window length
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𝑒 : Frame’s envelope,  𝑤: Window (w) length, h: Hop size. 

Envelope Variance ƒ𝒊
𝟒

=
 

 𝑁𝑤
෍

k= 

𝑁𝑤

|    ො i k  μොei
     ො i k    μොei

|
𝑁𝑤 : Total number of windows in a frame , Ƹ𝑒 : Frame’s 
normalized envelope

1-1 Feature Selection: Four features sensitive to changes of SNR in short frames of target speech mixed with multi-talker babble noise, were selected.

1-2 Feature Optimization: To optimize the quality of features, its Fischer score (  ) was numerically maximized and the suitable values for feature parameters

were selected.

 =
σ

𝑗=1
𝑁𝑐  𝑗 𝜇𝑗−𝜇 2

σ
𝑗=1
𝑁𝑐  𝑗𝜎𝑗

2
, 𝑁 : Number of classes (i.e., 𝑁 =  ), 𝜇𝑗: Mean of the feature in class j, 𝜇: Overall mean of the feature, 𝜌𝑗: Variance of the feature in class

j,  𝑗: Number of samples in class j.

1-3 Feature Decorrelation with Weighted PCA (Principle Component Analysis):

To reduce the correlation (redundancy) between the features, we use PCA to generate a new

smaller set of uncorrelated features. To take the quality of each feature into account we give a

relative weight to each feature based on its Fischer quality score.

Ӻ: Feature matrix , 𝑀: Mean matrix of features, 𝑇: Transformation matrix, 𝐶 : Covariance 
matrix of   ,  d : De-correlated feature matrix, , 𝐶 : Diagonal rank-ordered covariance matrix 
of  d,𝑊: W           r x

1-4 Training with GMM and EM:

For the classifier, we use the two dimensional Gaussian Mixture Model (GMM) where each class is modeled as the sum of a  Gaussian distributions . In

order to train our model, we use the iterative Expectation-Maximization (EM) algorithm
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1-5 Classification using MAP (Maximum a posteriori estimation)

1-6 Performance evaluation:
A database of 2,100 sentences, including 720 male speaker and 720 female speaker IEEE

standard sentences, 260 male speaker HINT sentences and 400 male speaker SPIN
sentences was used to create babble and speech samples. To create each babble sample,
the number and gender of talkers were randomly selected. The number of talkers varied
from 5 to 10. The performance of the classifier was evaluated using two-fold cross
validation. First, the classifier was trained with noisy speech samples randomly created
from half of the sentence database. Then the resulting classifier was evaluated using test
samples created from the second half of the sentence data base. Then we replaced the
testing and training database and repeated the same process. The average value of  
accuracy metric was measured :

𝑃 =
𝐶

𝐶+  + 𝑅𝑁 =
𝐶

𝐶+  −  =
 𝑃𝑅

𝑃+ 𝑅

where 𝐶, 𝑓+and 𝑓− are correct, false positive and false negative detection, respectively.

2-Denoising and Enhancement: The representation of the clean speech samples in an oversampled Tunable Q-factor Wavelet Transform (TQWT) exhibits some degree of group 

sparsity which does not exist in babble samples. Moreover, the distribution of the center frequencies of the sub-bands and the shape of the frequency responses of the TQWT resemble 
Mel-scale and Gammatone filter banks that are designed to reflect the human auditory system 
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2-1 Updating the threshold level: Threshold levels in each sub-band depend on the average noise level over the last

few noise dominated frames. 𝜇 : Estimated noise level for sub-band 𝑖, obtained by averaging 𝑙1norm of that sub-band

over the last 𝑀 noise dominated frames,   
 𝑘 

: Last 𝑘th noise dominated frame ,  
 

 𝑘 
: 𝑖th sub-band of   

 𝑘 
in TQWT

domain and J : total number of levels in TQWT (denoted with  ).

𝜇 =
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, … ,  

 +1
𝑘 } =    

𝑘
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1
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2-2 Adaptive Group Thresholding : 

For noisy speech frame  frame:  =     where  = ൛ 1 ,   , …… ,  +1 },   = ൛𝑐1 , 𝑐 , …… , 𝑐 𝑖
}

𝑐1to 𝑐 𝑖
are coefficient-groups of   . For each coefficient-group 𝑐𝑘 of sub-band   we define:

𝑟𝑘
 

=   

𝑐
𝑘 1

 
 1

Ƹ𝑐𝑘 = ൞
 𝑇 𝑐 𝑘

 , 𝑟𝑘
   

≤ 𝛾

 𝜖𝑇 𝑐 𝑘 , 𝑟𝑘
   

> 𝛾
,  𝑇 =

𝜌𝜏𝜇𝑖

𝐿𝑖

  : Length of sub-band 𝑖, 𝜏: controls the thresholding aggressiveness based on the frame’s class. 𝜌: determines
our desired overall denoising aggressiveness, 𝜖 : Reduction factor for soft thresholding , 𝛾: should always be
greater than 1.
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2-3 Parallel De-noising: First we create three distinct representations of the
signal in the wavelet domain using three TQWTs with different settings. Then
we apply adaptive group thresholding to each representation and create three
slightly different de-noised versions of the same signal. Three resulting de-
noised signals will eventually be averaged. To increase the de-noising
performance, three TQWTs should have low, medium and high Q factors
respectively. This will assure three different representations in the wavelet
domain. The redundancy and number of levels in each TQWT should be
selected so that the signal’s energy is distributed over many sub-bands.
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2-4 Enhancement: Adaptive group thresholding is adjusted based on the noise level. Hence it
significantly alters the babble structure and reduces it to sporadic and isolated coefficients with
high frequency content. To investigate this, we measured the high frequency content of speech
and noise dominated frames, after and before denoising. The energy of high frequency
components remains nearly constant in speech dominated frames, after and before parallel
denoising whereas it drastically increases in noise dominated frames. To exploit the above
mentioned property, after parallel denoising we apply a suitable low-pass filter only to the noise
dominated frames, to remove the high frequency residual components resulting from the
previous denoising steps and further enhance the speech quality. In SEDA we used a 6th order
Butterworth low pass filter with cut-off frequency of 4000 Hz.

3-Testing:

 7 Cochlear Implant users

 IEEE standard sentences
 with and without SEDA processing
 SNRs of 0, 3, 6, and 9 dB
 Stimuli: 4 randomly selected IEEE

sentence lists for each condition
(without replacement).

 Noise: Randomly created 10-talker (5
male and 5 female) babble (see 1.6)

 Average improvement between
7.19% to 17.19% depending on SNR.

 Sound quality measured with MUSHRA
(Multiple Stimuli with Hidden Reference
and Anchor)
 SEDA was rated as sounding better at

all SNR levels.

4-Bab-El Android app: We have designed a prototype cell-phone app. (Bab-EL) designed for Android devices

based on SEDA2 algorithm. The current version of the Bab-El can run in real-time on most Android devices and
introduces a latency as low as 20 milliseconds. Note that this latency will be added to the relatively high latency
inherent in the Android phones. Some of the Bab-El features are briefly described as follows:
 Calibration: To eliminate the effect of variations in the microphone’s frequency response and sensitivity in

different devices, we should calibrate the app before using it for the first time. In this mode the user is asked
to speak normally for 10 seconds in a quiet environment. The app analyses the audio and adjust the SEDA
classifier based on the result. This mode also checks the speed of the phone and makes suggestions for the
optimal de-noising settings.

 Settings: The app has 12 predefined settings which can be selected based on the noise type and phone
performance. The settings mainly differ in frame length, window type and wavelet and classifier parameters.
The user also can create new settings by choosing the wavelet and classifier parameters.

 Save and De-babble: This mode performs the de-noising on the recorded audio samples and saves the de-
noised signal.

 Real-Time De-babble: This mode performs real time de-noising on the noisy signal received by the cell phone
or an external microphone connected to the phone.

 Wireless De-babble: This mode performs real time de-noising on the noisy signal received from a remote cell-
phone. For this mode we need two cell phones (one sender and one receiver). Currently the connection
between the cell-phones is via Wi-Fi but we will introduce Bluetooth connection in the next version.

 Analysis : The app provides the user with real time basic information about the received audio signal including
the frequency content, noise level and loudness.
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Individual Speech intelligibility test results

Clean to Denoised Normalized Euclidian distance (High/Low) Freq. content ratio.

Threshold updating process using classifier’s result 

TQWT block diagram and main parameters

TQWT sub-bands, frequency response and wavelets.

Parallel De-noising
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Decorrelated Features 1 and 2 Scatter plot
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