
Appendix: An overview of robust statistics 

 
The goal of this appendix is to explain the benefits and rationale for using robust statistics and to 
provide a conceptual overview of these techniques.  In general, robust statistical techniques are 
used to provide the most accurate description and analysis of a dataset.  Robust techniques are 
designed to minimize the effects of two factors that can give rise to misleading results with 
traditional statistical techniques.  First, most traditional statistical measures are very sensitive to 
the tails of a distribution (i.e., outliers; Erceg-Hurn and Mirosevich 2008; Wilcox 1995).  
Second, traditional inferential statistical tests are sensitive to deviations from normality, even if 
those deviations are small (Erceg-Hurn and Mirosevich 2008; Wilcox 1998; Wilcox and 
Keselman 2003).  When faced with these problems, some researchers turn to traditional non-
parametric tests.  However, many non-parametric tests are designed for cases when the 
magnitude of the difference between two data points is considered not to be meaningful.  For 
example, when asking participants to judge the loudness of a stimulus on a scale from one to 
seven, the perceptual distance between a 2 and a 3 rating may not be the same as the perceptual 
distance between a 4 and a 5 rating.  Non-parametric techniques often reduce the data to a rank-
based scale.  When the magnitude information is meaningful, such as the difference between 
signal-to-noise ratios for two conditions, using such a non-parametric method will remove 
meaningful information. 
 
Outliers 

When there are no outliers and the data is symmetrically distributed, various measures of 
the central tendency, such as the mean, trimmed mean, or median, will all give the same 
estimate.  However, the mean can be a poor description of the central tendency of a distribution 
when there are outliers, largely because one data point is sufficient to change the calculated mean 
by an arbitrarily large amount.  Although most test measures impose inherent limits on the 
magnitude of the outliers (e.g., accuracy is bounded by 0 and 100%), preventing infinitely large 
shifts of the mean, outliers can still dramatically affect means, particularly with small sample 
sizes.  An alternative robust approach for estimating the central tendency is to use trimmed 
means, where the mean of the central portion of the data is calculated.  For most data, this will 
result in a value that is near the center of the bulk of the data.  Although many researchers are 
hesitant to use trimmed means because of the perception that this technique discards data, the 
very large and very small values are actually converted into rank values rather than discarded.  In 
essence, the trimmed mean is a cross between a mean and a median.  To calculate the trimmed 
mean, all values are rank ordered and the arithmetic mean is calculated based on the middle-
ranked values. For the purposes of this study and previous studies (e.g., Aronoff et al. 2014; 
Aronoff et al. 2011, 2012; Aronoff and Landsberger 2013; Aronoff et al. 2015), the 20% 
trimmed mean was calculated meaning that the largest 20% of the data and the smallest 20% of 
the data were converted to rank values and the mean of the central 60% of the data was 
calculated.  This percentage was used because it has been found to provide good control in terms 
of Type I error for a wide range of distributions (Wilcox 1995). 
 
Non-normality 

One of the key reasons that traditional statistical technics often provide inaccurate 
descriptions and conclusions regarding a dataset is the often inaccurate assumption of normality 
in traditional (parametric) statistical techniques.  There are a number of characteristics that make 



up a normal distribution, many of which will not be true for nearly every data set involving 
human data.  These include: 

1) Bell-shaped and unimodal
2) Symmetrical – there are an equal number of points to the left and the right of the center of

the distribution
3) The mean, median, trimmed mean, and mode are all the same value
4) The tails are infinitely long – the distribution contains infinitely large and small values
5) 68% of the data is within one standard deviation of the mean
6) 95% of the data is within two standard deviations of the mean
7) 99.7% of the data is within three standard deviations of the mean

Traditional statistical techniques transform datasets into normal distributions, usually by
scaling the mean and standard deviation of the normal distribution to match that of the dataset.  
However, deviations from normality are typical if not ubiquitous (Micceri 1989).  In these cases, 
traditional statistical techniques can greatly distort a dataset.  This can be seen in Figure A1.  The 
top row of Figure A1 shows three distributions.  The left distribution is a normal distribution.  
The middle distribution is a heavy-tailed distribution.  For this distribution, ten percent of the 
normal distribution was replaced by data from a normal distribution with the same mean but a 
considerably larger standard deviation.  This mimics what would occur when a moderate number 
of outliers are present.  The right distribution is an asymmetric distribution similar to what would 
occur when using data where negative numbers are impossible, such as with the number of 
correct responses.  When these distributions are analyzed using traditional techniques, where the 
data are fit to normal distributions with the same mean and standard deviation as the original 
data, there is a considerable distortion of the original distributions (as shown in the second row).   

In addition to distorting the data, even slight departures from normality can cause 
traditional inferential statistical methods to perform poorly, resulting in greatly reduced power 
(Erceg-Hurn and Mirosevich 2008; Wilcox 1998; Wilcox and Keselman 2003).   Given that 
deviations from normality are very common in real data (Bradley 1977; Micceri 1989; Miller 
1988; Wilcox 1990), even when sample sizes are large (Micceri 1989), the sensitivity of 
traditional statistical techniques to non-normality is not merely a theoretical concern.   

Figure A1. An example of how 
normal and non-normal 
distributions are treated with 
traditional analyses and bootstrap 
analyses. 



One technique that can be used in conditions with normality or non-normality is the 
bootstrap approach (DiCiccio and Romano 1988; Efron 1982; Erceg-Hurn and Mirosevich 2008; 
Keselman et al. 2008; Keselman et al. 2003; Wilcox et al. 1998).  Bootstrap analyses avoid the 
assumptions of normality by using a probability distribution based on the same characteristics as 
the data.  This distribution, referred to as a bootstrap distribution, is generated by repeatedly 
sampling with replacement from the original dataset, such that the bootstrap distribution has the 
same number of data points as were in the original distribution.  This means that the analyzed 
distribution matches that of the original data (see the bottom row of Figure A1).   

For each bootstrap distribution, a statistical measure is calculated (such as the mean or t-
statistic), resulting in a range of values for that statistical measure.  Based on that range of 
values, a 95% confidence interval is typically calculated (i.e., a range that includes 95% of those 
values).  This confidence interval is generally the metric used to determine significance.  If the 
full range of the confidence interval does not include 0, then there was a significant effect.  In 
contrast, if zero falls within the confidence interval of the mean, there was no significant effect 
of interleaving.  A large number of bootstrap distributions are created to arrive at a stable 
measure (2000 in the current study).  Unlike increasing the number of participants, increasing the 
number of bootstrap distributions does not increase the statistical power.  Instead, it only 
increases the reliability of the estimation of the statistical metric, as shown in Figure A2.   

Combining robust inferential and descriptive statistics 
To deal with both non-normality and outliers, it is possible to combine robust inferential 

statistics with robust descriptive statistics.  Bootstrap distributions are used to create a confidence 
interval of a statistical metric.  The general bootstrap framework is agnostic as to the statistical 
metric used, and as such, robust descriptive statistics such as trimmed means can be used to 
replace traditional descriptive statistics such as means.  The statistical metric chosen has no 
effect on the way that the bootstrap distributions are derived.  The same bootstrap distributions 
will be used whether the descriptive statistic chosen is the mean or the trimmed mean.  The only 
difference is whether the confidence intervals are based on the means or trimmed means of those  

bootstrap distributions.  By combining robust descriptive statistics with robust inferential 
statistics, it is possible to have maximally accurate statistical measures (Wilcox et al. 1998), 
assuring the most accurate conclusions.   

Figure A2. Median and range of 
upper and lower bounds of the 
confidence intervals for the 20% 
trimmed mean of the CI patients’ 
interleaved versus non-interleaved 
localization scores for different 
numbers of bootstrap distributions.  
The median confidence interval 
does not change with increasing 
bootstrap distributions but the 
range of upper and lower bounds 
becomes less variable. 



 
Robust methods for handling familywise error 
 When multiple comparisons are made on highly related data sets (e.g., comparing group 
one to group two, group one to group three, and group two to group three), the issue of 
familywise error arises where the probability of Type I errors increase.  This arises because with 
the criteria for significance (α) being p < .05, the likelihood of obtaining a significant result by 
chance for one analysis is 1/20.  However, if you run two analyses on highly related data sets 
using that criterion, the likelihood of obtaining a significant result for at least one of those 
analyses grows based on Equation 1. 

α = 1-(1- αˈ)n       Equation 1 
where αˈ is corrected α (0.05 when no correction is applied) and n is the number of related tests 
conducted. 

A standard approach to address this problem is to use a Bonferroni correction whereby α 
is divided by the number of tests conducted.  However, Bonferroni’s method controls Type II 
error relatively well for the case where there is only one significant result, ignoring the likelihood 
of multiple significant results.  Rom’s method (Rom 1990) takes the likelihood of multiple 
significant results into account.  Like a Bonferroni correction, this method of mediating 
familywise error has good Type I error control.  However, it has much better control of Type II 
error than a Bonferroni correction.  To conduct Rom’s method, all the p values are first rank 
ordered from largest to smallest.  The largest p value is selected for the first iteration and the 
following steps are used: 

1) The selected p values is compared to the adjusted α from Table A1 
2) If the selected p value is less than the adjusted α than that value and all smaller p values 

are significant 
3) If the selected p value is not less than the adjusted α then that value is not significant and 

the next largest p value is selected for the next iteration, starting again at step 1 (but 
increasing the iteration number) 

This iterative process is repeated until either one of the p values is less than the adjusted α or 
there are no p values left to compare.   
 

Iteration number Adjusted α 
1 0.05 
2 0.025 
3 0.0169 
4 0.0127 
5 0.0102 
6 0.00851 
7 0.00730 
8 0.00639 
9 0.00568 
10 0.00511 

Table A1.  Corrected α for each iteration of the sequential rejection procedure (adapted from 
Rom 1990). 
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