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A B S T R A C T

We introduce a new wavelet-based algorithm to enhance the quality of speech corrupted by multi-talker babble
noise. The algorithm comprises three stages: The first stage classifies short frames of the noisy speech as speech-
dominated or noise-dominated. We design this classifier specifically for multi-talker babble noise. The second
stage performs preliminary de-nosing of noisy speech frames using oversampled wavelet transforms and parallel
group thresholding. The final stage performs further denoising by attenuating residual high frequency compo-
nents in the signal produced by the second stage. A significant improvement in intelligibility and quality was
observed in evaluation tests of the algorithm with cochlear implant users.

1. Introduction

Although cochlear implants (CIs) have been highly successful at
providing speech understanding in optimal listening situations to the
profoundly deaf (e.g. Friedland et al., 2010), the performance of CI
users is severely impacted by the presence of background noise (e.g.
Fetterman and Domico, 2002; Muller-Deile et al., 1995). Therefore,
signal processing to remove background noise can be highly beneficial
for CI users (e.g. Dawson et al., 2011). One type of noise that has a
particularly significant effect on CI user speech understanding is “multi-
talker babble” which consists of many people talking simultaneously in
the background (e.g. Sperry et al., 1997). However, multi-talker babble
is one of the most frequently encountered noises that CI users face.
Hence, attenuating the speech from competing talkers is expected to
provide speech perception benefits for CI users.

Multi-talker babble is an example of a non-stationary noise. Unlike
stationary signals (e.g., white noise), in a non-stationary signal, statis-
tical parameters like mean, variance and autocovariance change over
time. Hence it is generally more challenging to predict or model the
behavior of a non-stationary signal over time. Although many real-time
single-channel noise removal methods have been proposed for CI de-
vices, fewer of these methods have provided benefits in non-stationary
noises such as multi-talker babble. Spectral similarities between multi-
talker babble and target speech (caused by the fact that both the target
speech and noise are comprised of speech signals) as well as the non-
stationary nature of multi-talker babble make it difficult to differentiate
and separate multi-talker babble from the target speech.

Yang and Fu (2005) proposed using pause detection and spectral
subtraction for noise reduction and tested the algorithm with seven
post-lingually deafened CI users. While a significant effect of the algo-
rithm was detected with speech-shaped noise, no significant effect of
the algorithm was detected with 6 talker babble. Another noise re-
duction method for CI users is to reduce the gain of the envelope of
noise-dominated frequency channels (Bentler and Chiou, 2006). This
method has been commercially implemented (e.g. ClearVoice) but
Holden et al. (2013) was unable to detect a significant benefit using
ClearVoice with multi-talker babble.

Mauger et al. (2012) introduced an optimized noise reduction
method by increasing the temporal smoothing of the signal to noise
ratio estimate and using a more aggressive gain function. This method
was tested in real-time on 12 CI users and significant improvement was
found in 4 and 20 talker babble.

Goehring et al. (2016) used auditory features extracted from the
noisy speech and a neural network classifier to find and retain the
frequency channels which have higher signal to noise ratio and at-
tenuate the channels with lower signal to noise ratio. Two versions of
the algorithm (i.e., speaker-dependent and speaker-independent) were
tested on 14 cochlear implant users for three different noise types in-
cluding 20 talker babble. Significant improvement was achieved in
multi-talker babble specifically with the speaker-dependent algorithm.
However, no significant improvement was observed in multi-talker
babble with the speaker-independent algorithm (see Table 1).

Sigmoidal-shaped compression functions have been shown to be
effective for speech understanding against a background of multi-talker

https://doi.org/10.1016/j.specom.2017.11.004
Received 24 April 2017; Received in revised form 16 October 2017; Accepted 8 November 2017

⁎ Corresponding author.
E-mail address: rs4462@nyu.edu (R. Soleymani).

Speech Communication 96 (2018) 102–115

Available online 09 November 2017
0167-6393/ © 2017 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01676393
https://www.elsevier.com/locate/specom
https://doi.org/10.1016/j.specom.2017.11.004
https://doi.org/10.1016/j.specom.2017.11.004
mailto:rs4462@nyu.edu
https://doi.org/10.1016/j.specom.2017.11.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.specom.2017.11.004&domain=pdf


babble with 20 background talkers (Hu et al., 2007; Kasturi and Loizou,
2007) by attenuating channels with a low signal-to-noise ratio (SNR).
However, the perceptual and statistical properties of multi-talker
babble depend on the number of talkers (Krishnamurthy and
Hansen, 2009). The more talkers present in a background noise, the
more the properties of the noise resemble stationary noise. The per-
formance of the sigmoidal-shaped compression functions for multi-
talker babble with smaller number of talkers is not clear.

Toledo et al. (2003) observed speech intelligibility improvement for
multi-talker babble in four cochlear implant users. Their method is
based on envelope subtraction and estimates the noise envelope using a
minimum tracking technique (See Table 1).

Wavelet-based denoising algorithms have also been introduced for
cochlear implant devices. Ye et al. (2013) proposed shrinkage and
thresholding in conjunction with a critically-sampled dual-tree complex
wavelet transform. While significant improvement was observed in
speech-weighted noise, no significant benefit was observed for multi-
talker babble. This is expected, because the algorithm was designed for
and trained with speech weighted noise.

Many other single-channel denoising methods have been proposed
for cochlear implant devices (e.g. Loizou et al., 2005; Healy et al., 2013,
and Chung et al., 2004). However, only a subset of these single-channel
denoising methods have been evaluated with multi-talker babble noise.
For those algorithms, which have been evaluated with multi-talker
babble, the testing conditions, sentence corpuses, languages and types
of babble noise vary across studies and therefore it is difficult to com-
pare the effectiveness across algorithms. It is worth noting that most
algorithms provided statistically significant improvements only for high
SNRs. For reference, the results and testing conditions for some of these
denoising algorithms are summarized in Table 1.

In this paper, we propose and evaluate a front-end babble noise
reduction algorithm. Although the algorithm is not necessarily specific
for CI users, we evaluate performance of the algorithm with CI users
because they stand to benefit greatly from noise reduction for positive
SNRs where we expect the algorithm to perform best.

2. Algorithm

The babble noise reduction problem can be summarized as

∑= +
=

Y S S
i

n

i
1 (1)

where Y is the noisy signal, S is the target speech and S1 to Sn are
individual background talkers which collectively form the multi-talker
babble. For developing the algorithm, we made the following assump-
tions:

1. Target speech and background babble both consist of human speech.
This makes it difficult to distinguish the target speech from the
background babble.

2. Babble, which comprises of multiple independent speech signals, is

likely to have a different level of information disorder or uncertainty
than a single talker. Features such as entropy, which measure the
unpredictability of information content of a signal might be helpful
to differentiate target speech from the babble.

3. Target speech is louder (i.e., has greater amplitude variance) than
each individual background speaker, i.e.:

> ∀ ≤ ≤σ σ i n1 .S S
2 2

i (2)

Consequently, in a noisy speech frame, samples originating from the
target speech are more likely to have a larger amplitude than sam-
ples originating from the babble. Hence, thresholding (which can be
used to separate large-amplitude samples from the small-amplitude
samples) can potentially solve the babble problem. Note that (2)
does not imply that the energy of the target speech is necessarily
greater than the total energy of the multi-talker babble. In fact, it is
possible that the Signal to Noise Ratio (SNR) is negative while (2)
still holds.

However, a simple temporal or spectral thresholding cannot ade-
quately solve such a complex problem as separating one talker from a
babble background. There are two reasons for the ineffectiveness of
simple temporal/spectral thresholding for babble reduction: First,
babble and speech are highly overlapping in time and frequency.
Second, some target speech coefficients in the time or frequency do-
main are inevitably smaller than the threshold level and will be atte-
nuated or set to zero by the thresholding. Moreover, in practice the
noise level is unknown and this makes it difficult to estimate a suitable
threshold level. In the following sections, we propose a solution to these
problems by designing a classifier to estimate the noise level and ap-
plying adaptive group thresholding in an oversampled wavelet domain
to minimize the overlapping and distortion problems.

In our proposed algorithm, SEDA (Speech Enhancement using
Dynamic thresholding Approach), every incoming frame of the noisy
speech will go through the following three steps: (1) classification, (2)
denoising, and (3) enhancement. The classification stage classifies the
incoming noisy frames as being either speech-dominated or noise-
dominated. The denoising stage performs adaptive group thresholding
in a wavelet domain to attenuate components which primarily originate
from babble. The threshold levels in the denoising stage are adjusted in
real-time based on the results of the classification stage. Finally, in the
enhancement stage, a low pass filter is applied to the noise-dominated
frames to eliminate high frequency artifacts resulting from the de-
noising stage (see Fig. 1).

2.1. Classification

The proposed classifier categorizes relatively short frames of the
input signal (consisting of the combination of target speech and the
background multi-talker babble) as being either noise-dominated or
speech-dominated based on the frame's Signal-to-Noise-Ratio (SNR). In
contrast to overall SNR which is estimated over the entire length of the

Table 1
Summary of results and testing conditions for previous studies investigating denoising of multi-talker babble. Note that the improvement observed was not significant for four of the nine
tests. The non-significant improvements are indicated with “(n.s.)”.

Method Babble type / Source Mean improvement Comments

Yang and Fu (2005) 6 Talker /Unknown 7.75 % (n.s.) 7 Subjects in 0, 3, 6 and 9 dB SNRs
Hu et al. (2007) 20 Talker / AUDITEC CD 10–25% 9 Subjects 5 dB SNR, 5 Subjects 10 dB SNR
Kasturi and Loizou (2007) 20 Talker / AUDITEC CD ∼ 11% 9 Subjects in 5 and 10 dB SNRs
Ye et al. (2013) 20 Talker / Unknown ∼ 0.39 dB SRT (n.s.) 9 Subjects, SRT test
Mauger et al. (2012) 4 - 20 Talker / Unknown 5–7% 12 Subjects, SNR(50%) and SNR(50%)-1dB
Toledo et al. (2003) Unknown / AUDITEC CD ∼ 8% (n.s.) 4 Subjects in 5 dB SNR
Dawson et al. (2011) Cocktail Party / Field Recording 0.87–1.09 dB SRT 13 Subjects, SRT test
Goehring et al. (2016) 20 Talker / AUDITEC S.L. 0.4 dB SRT (n.s.) 14 Subjects, SRT test, speaker-independent

2 dB SRT 14 Subjects, SRT test, speaker-dependent
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signal, the local SNR is estimated over relatively short frames of the
noisy signal. In the example illustrated in Fig. 2, the short frames are
100ms in duration. This figure shows the values of the local SNR in 10
seconds of noisy speech (i.e., 100 non-overlapping frames) corrupted by
10 talker babble with an overall SNR of 6 dB. Frames with a positive
SNR are considered to be speech-dominated while frames with negative
SNRs are considered to be noise-dominated. However, to avoid classi-
fying frames with negligible SNR difference into different classes, a
narrow buffer zone is defined between −1 dB and +1 dB SNR. Frames
with SNRs within this buffer can be correctly classified as either speech-
dominated or noise-dominated. A database of 2100 sentences, including
720 male speaker and 720 female speaker IEEE standard sentences
(IEEE Subcommittee, 1969), 260 male speaker HINT sentences
(Nilsson et al., 1994) and 400 male speaker SPIN sentences
(Bilger et al., 1984) was used to create babble and speech samples.

To create each babble sample, the number and gender of talkers
were randomly selected. The number of talkers varied from 5 to 10. The
frame duration was selected to be 128ms. As a result, the frame length
varies as a function of sampling rate.

2.1.1. Feature selection
Four features sensitive to changes of SNR in short frames of target

speech mixed with multi-talker babble noise, were selected. For
every incoming noisy speech frame Fi, a feature vector
F = f f f f[ , , , ]i i i i i

(1) (2) (3) (4) is formed. Our selected features are as fol-
lows:

Entropy fi
(1): To compute this feature, we compute the entropy of

each frame using its histogram as follows:

∑ ∑= − = − ⎛
⎝

⎞
⎠= =

f P k log P k h k
L

log h k
L

( ) ( ( )) ( ) ( )
i

k

N

k

N
(1)

1
10

1
10

(3)

where h is the amplitude histogram of Fi, P(k) is the probability of the
kth bin, N is the number of bins and L is the frame's length. Because L is
a constant, to avoid extra computation we simplify (3) and calculate the

feature as: = − ∑ =f h k log h k( ) ( ( ))i k
N(1)

1 10 . The value of this feature in-
creases with increasing frame SNR.

Post-thresholding to pre-thresholding RMS (Root Mean Square)
ratio fi

(2): The value of this RMS ratio increases with increasing frame
SNR. To compute this feature, first we set a threshold level τ(Fi ):

=τ F
L

F( ) 1 Ki i 1 (4)

where ‖Fi‖1 is the l1 norm of the frame Fi. Then we find Fi
th by hard

thresholding Fi with threshold level τ(Fi). Finally, we calculate the ratio
of the RMS values of Fi

th and Fi.

=f
rms F
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i
th

i

(2)

(5)

Envelope Variance fi
(3): The variance of the frame's envelope in-

creases with the frame's SNR. To obtain this feature, we first compute
the frame's envelope ei as follows:

∑= +
=−

e n
L

F k nh w k( ) 1 ( ) ( )i
w

k L
i

2
w

Lw
2

(6)

where, Lw is the window length, w is the window and h is the hop size.
Here we use non-overlapping rectangular windows with h= Lw. Then
we find the normalized envelope ̂ei :

̂ =e n e n
e

( ) ( )
max( )i

i

i (7)

and finally, we calculate the envelope variance:

̂∑= = −
=
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where, Nw is the total number of windows in a frame and
̂= ∑ =μ e n( )i N

N
i

1
n 1w

w .

Envelope Mean-Crossing fi
(4): The envelope mean-crossing de-

creases with increasing frame's SNR. To extract this feature first we
compute the envelope ei using (6). Then we calculate the envelope
mean-crossing as follows:

∑= − − − −
=

( ) ( )f
N

μ μ1
2

sign ê (k) sign ê (k 1)i
w

N
(4)

k 2
i ê i ê

w

i i
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where: êi and μêi are the normalized envelope and its mean respectively
and sign(x) is defined as:

=
⎧
⎨
⎩

>
− <

=

x
x
x

sign(x)
1, 0

1, 0
0, 0

2.1.2. Feature optimization
For each of the previously discussed features, the quality can be

estimated using a Fischer score (Tang and Liu, 2014; Gu et al.,2012;
Duda, 2001):

12

3

Fig. 1. SEDA overall block diagram.
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Fig. 2. Local SNR for noisy speech sample with overall SNR=6. Frame dura-
tion= 100 ms.
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where Nc is the number of classes (i.e., =N 2c ), μj is the mean of the
feature in class j, μ is the overall mean of the feature, σj is the variance
of the feature in class j, and nj is the number of samples in class j. To
optimize the quality of features, (10) was numerically maximized for
each feature and the suitable values for feature parameters were se-
lected. Table 2 shows the selected values for parameters which de-
termine the quality of each feature.

2.1.3. Weighted PCA (Principle component analysis)
To reduce the correlation (redundancy) between the features, we

use PCA to generate a new smaller set of uncorrelated features.
Assuming F is the feature matrix and NF is the total number of noisy
speech frames, we can write:F F F F= [ , . .. ]N1 2 F . First we findF 0 by
removing the mean of features as follows:

F F= − M0 (11)

whereM is the mean matrix of features. The goal is to find the trans-
formation matrix T, such that:

F F= Td 0 (12)

where,F d is the de-correlated feature matrix. The covariance matrix C0

of F 0 can be obtained as follows:

F F=C
N
1 .T

0 0 0 (13)

Using (12) and (13) we can write (Shlens, 2003; Bishop, 2007; Bello,
2016):

F F F F F F= = = ⎡
⎣

⎤
⎦

=C
N N

T T T
N

T TC T1 1 [ ][ ] 1
d d d

T T T T T
0 0 0 0 0

(14)

where, Cd is a diagonal rank-ordered covariance matrix of uncorrelated
feature matrix F d. In order to diagonalize the symmetric matrix of C0

we compute the orthogonal matrix of its eigenvectors. Assuming r is the
rank of covariance matrix C0, the eigenvectors of C0 and their asso-
ciated eigenvalues can be written as: {v1, ⋯v v, }r2 and { ⋯λ λ λ, , r1 2 }
such that: =v λ vC i i i0 . Now we define: = v v vV [ . . . ]r1 2 and using
(14) we have (Shlens, 2003; Bishop, 2007; Bello, 2016):

= ⇒ =C V C V T Vd
T T

0 (15)

The transform matrix T is a matrix whose rows are the eigenvectors
of the covariance matrix C0. Having T, we can de-correlate the original
feature vector F0 using Eq. (12). Because we have four original features,
in the case of r < 4 we select − r4 arbitrary orthonormal vectors and
complete the V. These orthonormal vectors do not change the result
because they are associated with zero variance features (Shlens, 2003).
To take the quality of each feature into account we give a relative
weight to each feature based on its Fischer quality score. The weighted
covariance matrix C0 will be obtained as (Yue and Tomoyasu, 2004):

F F= =
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T T
0 0 0

1

2

3
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where, W is the weighting matrix and S1–S4 are the average Fischer
scores of the four original features. After completing this stage, we have
four new de-correlated features which are ranked based on their var-
iances. We selected the first two features with the highest Fischer score
(see Fig. 3).

2.1.4. Training with GMM
To train the classifier, we use the two dimensional Gaussian Mixture

Model (GMM) where each class is modeled as the sum of a n Gaussian
distributions as follows: (Reynolds, 2009):

F N F
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where F d is a two-dimensional de-correlated feature matrix using
weighted PCA and wi, μi and Ci are the weight factor, mean and cov-
ariance of the ith Gaussian distribution respectively. We also should
have ∑ == w 1i

n
i1 .

The probability of a data sample k with a feature vector F d(k)
belonging to a Gaussian j can be calculated as (Bishop, 2007; Bello,
2016):

N F

N F
=

∑ =
p

w k μ C

w k μ C

( ( ) , )

( ( ) , )j
k j d j j

i
n

i d i i1 (18)

In order to train our model, we use the iterative Expectation-
Maximization (EM) algorithm (Bishop, 2007, Reynolds et al., 2000;
Reynolds, 2009; Bello, 2016). In order to fit a Gaussian to each cluster
we should maximize the following logarithmic function (Bishop, 2007;
Bello, 2016):

F N F∑ ∑= ⎧
⎨⎩

⎫
⎬⎭= =

p μ C w w k μ Clog{ ( , , )} log ( ( ) , )d
k

N

i

n

i d i i
1 1

F

(19)

where NF is the number of data samples (i.e., the number of audio
frames).

We first initialize wi, μi, Ci and calculate pi
k, then update wi, μi, Ci

using the calculated values of pi
k (Bishop, 2007; Bello, 2016):

Table 2
Selected values for feature parameters by numerically maximizing Fischer score. Values
are selected for frame duration of 128 ms and sampling rate of 16,000 samples per
second. B is the bin width in histogram, M is the long term maximum amplitude of the
noisy signal (constant), K is the threshold coefficient in Eq. (4) and Lw is the window
length in Eq. (6).

Feature Parameter Selected value

fi(1) �∈B 0.05M
fi(2) �∈K 3
fi(3), fi(4) �∈Lw 50
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Fig. 3. Scatter plot of de-correlated features 1 and 2 computed over 25,000 randomly
generated noisy speech frames corrupted with multi-talker babble with random SNR and
number of talkers (Between 5–10). Blue dots represent the noise-dominated frames and
red dots represent the speech-dominated frames. Frame duration = 128 ms, Sampling
rate= 16,000 samples per second.
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We repeat the above stages until the convergence of (19). We can
train our classifier with only one Gaussian for each class to avoid heavy
computation. By increasing the number of Gaussians the classifier ac-
curacy will slightly increase (See Fig. 4). In the final algorithm, a
classifier with only one Gaussian for each class was trained.

2.1.5. Classification using MAP (Maximum a posteriori estimation)
After the classifier is trained, we find the probability of each test

feature set F d belonging to a class X by (Duda, 2001; Bello, 2016):

Fargmax P class P class[ ( ) ( )]X d X X (21)

X ∈ { S, N} S: Speech-Dominated N: Noise-Dominated.

F N F∑=
=

P class w μ Cwhere ( ) ( , ).d X
i

n

i d i i
1 (22)

μi, Ci and wi are also available from the GMM training process.
The values of P(classN) and P(classS) change as a function of the

overall (long term) SNR and can be obtained during training by com-
puting the number of each class occurrence divided by the total data
samples in training data for each overall SNR. If the overall SNR
changes very quickly (i.e., fast varying noisy condition) we can assume

= =class P class( ) ( ) 0.5N S . In most of the cases the general noise level
does not change quickly (i.e., slow varying overall SNR). In this situa-
tion we can estimate more accurate values for P(classN) and P(classS) by
roughly estimating the overall SNR. To estimate the overall SNR we
suggest a very simple classifier which classifies the long frames of the
noisy speech (i.e., four seconds long) into one of the 6 classes listed in
Table 3 and choose the P(classN) accordingly.

The overall SNR classifier uses only two of the features mentioned
earlier in this section (RMS ratio and envelope mean crossing) calcu-
lated over the long frames of the noisy speech without de-correlating
the features with PCA. We use GMM with a single Gaussian per class for
training the overall SNR classifier (see Fig. 5). Note that the in-
dependent accuracy of the overall SNR classifier is not a concern.
However, this classifier works as a component of the SEDA classifier

and its accuracy will affect the accuracy of SEDA classifier. The SEDA
classifier's accuracy is measured in the next section. P(classN) and P
(classS) should be continuously updated based on the estimated overall
SNR and the frequency of overall SNR detection update depends on our
assumption of how fast the noisy environment varies. In this work we
updated P(classN) and P(classS) once every four seconds.

2.1.6. Performance evaluation
The performance of the classifier was evaluated using two-fold cross

validation (Kohavi, 1995). First, the classifier was trained with noisy
speech samples randomly created from half of the sentence database
(with random number and gender of talkers). Then the resulting clas-
sifier was evaluated using test samples created from the second half of
the sentence data base. Subsequently, the following accuracy metrics
were computed:

=
+

=
+

=
++ −P C

C f
R C

C f
F P R

P R
2

N
(23)

where C, +f and −f are correct, false positive and false negative de-
tection, respectively. Then we swapped the testing and training data-
bases and repeated the same process and obtained new values for ac-
curacy metrics. Finally, we averaged the resulting two values for each
accuracy metric as per two-fold cross validation method (Powers 2011;
Swets 1988; Bello, 2016).

Fig. 6 shows the calculated F accuracy metric for a classifier trained
with a single Gaussian for each class. The same result was achieved by
testing the classifier with 10-talker babble extracted from the AzBio
testing material which consists of 5 male and 5 female speakers (Roland
et al., 2016).
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Fig. 4. GMM plots using EM method with only one Gaussian per class (left) and three Gaussians per class (right). computed over 10 h (281,250 frames) of randomly generated noisy
speech frames corrupted with multi-talker babble with random SNR and number of talkers (between 5–10). Frame duration=128 ms, Sampling rate= 16,000 samples per second.

Table 3
Selected values for P(classN) for various overall SNR classes. Note that

= −class P class( ) 1 ( )S N .

Overall SNR P(classN)

SNR<−1.5 dB 0.8171
−1.5 dB < SNR < 1.5 dB 0.6599
1.5 dB < SNR < 4.5 dB 0.4907
4.5 dB < SNR < 7.5 dB 0.3645
7.5 dB < SNR < 10.5 dB 0.2695
SNR>10.5 dB 0.1941
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To train the final SEDA classifier, we used half of the sentence data
base to create multi-talker babble samples. We used the other half to
create multi-talker babble for the listening test described in Section 3.
As was done for the classifier evaluation, we randomized the number
and gender of talkers to train the final classifier. IEEE standard sen-
tences with male speakers were used to create the target speech for the
listening test (see Section 3). Hence for training the final SEDA classifier
we did not use IEEE sentences with male speaker as target speech.

2.2. Denoising

Sparsification using an oversampled wavelet transform is an effec-
tive way to minimize the overlapping between signal and noise coef-
ficients. However, sparsification is an iterative process which often
cannot be implemented in real-time algorithms due to its high com-
putational requirements. Moreover, human speech cannot be efficiently
sparsified in most wavelet domains unless we implement additional
measures (e.g., Morphological Component Analysis; MCA) (Selesnick,
2010; Selesnick, 2011a). The representation of the clean speech sam-
ples in an oversampled Tunable Q-factor Wavelet Transform (TQWT;
Selesnick, 2011b) exhibits some degree of group sparsity which does
not exist in babble samples. SEDA takes advantage of this property
(among others) to denoise the speech samples which are corrupted by
multi-talker babble.

Note that increasing the oversampling rate of a wavelet transform
will increase number of samples and consequently the required

computation by the same factor. Hence using a conventional filter bank
in which each output channel has the same sampling frequency as the
input signal has the disadvantage of increasing the computational costs
in real-time applications. TQWT provides the ability to optimize the
oversampling rate. A TQWT is defined by three parameters which can
be adjusted independently: Q-factor, the redundancy, and the number
of levels (Fig. 7). The Q-factor is a measure of the oscillatory behavior
of a pulse; it is defined in terms of the spectrum of the pulse as the ratio
of its center frequency to its bandwidth. The redundancy is the over-
sampling rate of the wavelet transform and is always greater than 1. By
changing these parameters, we can obtain different representations of
the signal in the wavelet domain. We use this property later in this
paper in parallel denoising technique. Another advantage of the TQWT
is in its spectral properties, namely the frequency responses of its sub-
bands, are consistent with the human auditory system. The distribution
of the center frequencies of the sub-bands and the shape of the fre-
quency responses of the TQWT resemble Mel-scale and Gammatone
filter banks that are designed to reflect the human auditory system
(Fig. 7).

2.2.1. Adaptive group thresholding
We propose an adaptive group thresholding of the TQWT domain

coefficients of the noisy speech, based on the following strategies:

1. For each sub-band i in the TQWT domain, the threshold level should
be just enough to remove most of the babble noise with minimum
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Fig. 8. Block diagram of average noise level updating process.
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distortion of the target speech. Hence for a given sub-band i we need
to know the noise level in order to select the appropriate threshold
level. If the current noisy speech frame is speech-dominated, we
estimate the noise level based on the average noise level in the same
sub-band over the last few noise-dominated frames.

2. For every frame, we divide each TQWT sub-band into multiple
shorter segments (i.e., coefficient-group) where each coefficient-
group consists of a few coefficients (SEDA works with 16 coefficients
per coefficient-group). Hard and soft thresholding will be used al-
ternatively for different coefficient-groups.
For a real-valued signal x, hard and soft thresholding with threshold
level T are defined with HT(x) and ST(x) as follows:
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> =
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Hard thresholding will be used for coefficient-groups with small l1
norm value. This will remove many small coefficients originating
from the noise source. Recall that target speech is louder than any
individual background talker and has some degree of group sparsity
in TQWT domain, therefore low amplitude coefficients scattered
across the sub-band without forming a distinct group of coefficients,
are more likely to originate from the babble source. A milder soft
thresholding (with a smaller threshold level) will be used for coef-
ficient-groups with large l1 norm. This will prevent distortion when
a mixture of large and small coefficients coming from target speech
are concentrated in a group/cluster (see Fig. 8). Using an aggressive
hard thresholding in these cases would eliminate the smaller coef-
ficients and would lead to distortion.

3. General thresholding aggressiveness (level) for each frame is also
determined based on the result of the classification. A more ag-
gressive thresholding is used for noise-dominated frames whereas a
less aggressive thresholding is used for speech-dominated frames.
Details are given in following sub-sections.

Updating the threshold level
As previously mentioned, threshold levels in each sub-band depend

on the average noise level over the last few noise-dominated frames. To
update the noise level estimation for every incoming frame we define
an array μ as follows:
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where μi is the estimated noise level for sub-band i, obtained by aver-
aging l1norm of that sub-band over the last M noise-dominated frames,
Fn

k( ) is the kth frame in the last M noise-dominated frames and wi
k( ) is its

ith sub-band in TQWT domain and J is the total number of levels in
TQWT (denoted with φ).

We estimate the current noise level at each sub-band of the TQWT
by averaging the noise level in that sub-band over the last M noise-
dominated frames. If the ambient noise is relatively steady, the average
noise level in TQWT sub-bands does not change quickly. Conversely,
the noise level in sub-bands changes quickly in response to relatively
fast varying and non-stationary noise such as multi-talker babble. As we
increase the number of talkers in babble, the noise level in TQWT sub-
bands becomes steadier. To keep up with the fast variation of the
babble noise in TQWT sub-bands, a relatively small value for M
(e.g.,M≤ 5) is preferred. Choosing large values for M would decrease
the sensitivity of the algorithm to the transient variations of the babble
level in TQWT sub-bands. In our implementation, M is set to 5 as our

experiments suggest that this value provides a relatively accurate noise
level estimation for a wide range of multi-talker babble conditions.
However, further investigation is required to determine the optimal
value of M.

In the event that a new noise-dominated frame +Fn
M( 1) is detected,

we update each element of array μ as follows:

=
− + +

μ
M μ w

M
( 1)

i
new i

old
i

M( 1)
1
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This updating process is shown in Fig. 8.

Thresholding
The previous steps produce an updated array of estimated noise

levels for all sub-bands. Using this array, we implement the adaptive
group thresholding for each sub-band as follows: Denoting by F an in-
coming frame of the noisy speech, we write:

= = … +w φ F w w w w( ) where { , , , }J1 2 1

As discussed above, each TQWT sub-band i will be divided into ni
coefficient-groups as follows:

= …w c c c{ , , , }i n1 2 i

where, c1to cni are coefficient-groups of wi. For each coefficient-group ck
of sub-band wi we define rk

i( ) as:
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Using rk
i( ) we classify each coefficient-group as either high-amplitude

or low-amplitude, and apply hard and soft thresholding to low and high
amplitude coefficient-groups respectively, as follows:
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where μi is the updated average noise level of the sub-band i over the
last M noise-dominated frames, Li is the length of sub-band i, τ controls
the thresholding aggressiveness based on the frame's class (we selected

=τ 1 for speech-dominated frames and =τ 1.5 for noise-dominated
frames), ϵ is a reduction factor for soft thresholding which should al-
ways be smaller than 1 (we selected =ϵ 0.3), γ should always be greater
than 1 (we selected =γ 5) and ρ determines our desired overall de-
noising aggressiveness which mainly depends on the overall SNR. Our
experiments with various values for ρ shows that in noisier situations
(i.e., lower SNR) where the target speech is not sufficiently stronger
than the background noise, we should select slightly smaller values for ρ
to avoid target speech distortion. Conversely, in higher SNRs we can
select slightly larger values for ρ which maximizes the noise reduction
without major distortion of the target speech. As a part of the SEDA
classifier, we roughly classified the overall SNR into one of the six SNR
ranges listed in Table 2 as discussed in Section 2.1.5. The main purpose
of that classification was to estimate the values of P(classN) and P(classS)
for maximum a posteriori estimation. In addition to MAP estimation,
we use this estimated SNR range to select the value of ρ in the denoising
stage (we selected =ρ 2 for overall SNR<4.5, =ρ 3 for 4.5< overall
SNR<10.5 and =ρ 3.5 for overall SNR>10.5). Note that the selected
values for SEDA parameters are tuned for multi-talker babble noise with
number of talkers between 4–20 and we used the same values for SEDA
parameters during the listening tests described in Section 3. Fig. 9
shows that soft thresholding preserves the shape of the clusters (by
keeping smaller coefficients) in speech originated high amplitude
coefficient-groups c1, c2, c7 and c8.

2.2.2. Parallel denoising
Adaptive group thresholding usually inflicts some distortion to the

original speech. We propose a parallel denoising approach to recover
the distorted parts of the speech. Parallel denoising also changes the
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behavior of the residual babble noise. We will employ this property in
the next section to further de-noise the signal.

First we create three distinct representations of the signal in the
wavelet domain using three TQWTs with different settings. Then we
apply adaptive group thresholding to each representation and create
three slightly different de-noised versions of the same signal. The three
resulting de-noised signals will eventually be averaged. It is likely that
some areas which are distorted in one de-noised version will be re-
covered by another and this potentially reduces the overall distortion.

To increase the denoising performance, three TQWTs should have
low, medium and high Q factors respectively. This will assure three
different representations in the wavelet domain. The redundancy and
number of levels in each TQWT should be selected so that the signal's
energy is distributed over many sub-bands. Our selected values for a
frame duration of 128ms and sampling rate of 16,000 samples per
second (i.e., frame length of 2048 samples) are:

= = = = = = = = =Q r J Q r J Q r J9, 3, 67, 5, 3, 43, 2, 3, 201 1 1 2 2 2 3 3 3 .
Using three TQWTs, for an incoming noisy speech frame F we have:

= =w φ F w φ F( ), ( )
.

1
..

2 , =w φ F( )
...

3 where, w w,
. ..

and w
...

are three dif-
ferent wavelet domain representations of frame F. If we denote the
adaptive group thresholding process with , we have:

and and applying inverse TQWT
to , and we have: , and

where and are three different de-noised
versions of F. Finally, the averaged result will be:

(29)

where α is a gain parameter to control the output signal's energy
(Fig. 10). We selected =α 1

3 to roughly equalize the loudness of the
target speech in input and output of the SEDA algorithm. To measure
the effect of the parallel denoising on reducing the denoising distortion
we use normalized Euclidean distance applied to the magnitude of the
spectrograms which is defined as:

= −E X X S S
S

( , )d 1 2
1 2 2

2 2 (30)

where, S1 and S2 are Short Time Fourier Transforms (STFT) of audio
signals X1 and X2 respectively. Our experiments show that parallel de-
noising effectively reduces the normalized spectral Euclidean distance
between de-noised and clean speech. This means that on average, the
normalized spectral Euclidean distance between the output of the

parallel denoising (Favg) and clean speech is smaller than each of the
three Euclidean distances between denoised versions of and
and clean speech.

2.3. Enhancement

Even though adaptive group thresholding and parallel denoising do
not eliminate all the babble mixed with the target speech, they alter the
babble properties. Adaptive group thresholding is adjusted based on the
noise level. Hence coefficients originating from target speech are less
affected by the thresholding whereas coefficients originated from
babble are more likely to be attenuated or set to zero. Parallel denoising
and adaptive group thresholding significantly alter the babble structure
and reduce it to sporadic and isolated coefficients with high frequency
content. (See impulse shape coefficients in coefficient-groups c5 after
thresholding in Fig. 9) To investigate this, we measured the high fre-
quency content of speech and noise-dominated frames, after and before
denoising. Our experiments show that the energy of high frequency
components remains almost constant in speech-dominated frames, after
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and before parallel denoising whereas it drastically increases in noise-
dominated frames. To exploit the above mentioned property, after
parallel denoising we apply a suitable low-pass filter only to the noise-
dominated frames to remove the high frequency residual components
resulting from the previous denoising steps and further enhance the
speech quality. In SEDA we used a 6th order Butterworth low pass filter
with cut-off frequency of 4000 Hz.

3. Methods

The effect of SEDA on speech intelligibility and sound quality was
evaluated for cochlear implant users. IEEE sentences were presented
against randomly generated multi-talker background noise at SNRs
between 0 and 9 dB with and without SEDA processing. In the first
experiment, subjects were asked to repeat as much of each sentence as
they could understand. In the second experiment, subjects were asked
to rate the sound quality of each sentence.

3.1. Subjects

Seven post-lingually deafened CI subjects were tested. None of the
subjects had usable residual hearing in either ear without amplification.
Nevertheless, all subjects who used hearing aids in daily life wore foam
earplugs during the experiment. Specific subject demographics are
given in Table 4.

All subjects provided informed consent in accordance with the
Institutional Review Board at the New York University Langone
Medical Center. For all subjects, intelligibility in quiet was measured as
a reference and its average was 63.6%.

3.2. IEEE Sentences in Noise Intelligibility

IEEE standard sentences (IEEE Subcommittee, 1969) with and
without processing at SNRs of 0, 3, 6, and 9 dB were used to evaluate
SEDA. As a baseline, understanding of IEEE sentences in quiet were also
evaluated. The noise used for testing was the 10-talker (5 male and 5
female speakers) babble randomly created from a database of 2100
sentences (excluding the sentences which were used for training the
classifier) as described in Section 2.1.6. For each of the eight speech in
noise conditions (processed and unprocessed at four different SNRs), 4
sentence lists were randomly selected (without replacement) from 72
male speaker IEEE standard sentence lists. An additional 2 sentence lists
were also randomly selected to evaluate speech in quiet performance
(i.e. with no background talkers or SEDA processing) for all subjects.
The resulting 34 lists of sentences (340 sentences total) were presented
in a random order to the subject. Before starting the experiment, the
subject practiced the test using a randomly selected sentence list where

each of the sentences was presented in a different condition. Speech
material was played in free field in a double-walled sound booth at 65
dBa. Subjects were instructed to face the loudspeaker and were posi-
tioned approximately 1 m from the loudspeaker. Speech understanding
was performed using i-STAR software (TigerSpeech Technology and
Emily Fu Foundation, 2015). Subjects listened using their clinical set-
tings of their cochlear implant. If applicable, subjects were instructed to
remove their hearing aid devices during the test and wear a foam
earplug. Subjects were instructed to repeat as much of the sentence as
they could. Each sentence was presented only once. For each subject,
the randomization process was repeated and new sentence lists were
assigned. Subjects’ responses were recorded and the percent correct of
all words (combined key and non-key) for each condition was calcu-
lated by i-STAR. Note that i-STAR software works with databases of pre-
processed audio samples. To simulate the real-time condition, we used
the SEDA algorithm which receives and processes the noisy signal frame
by frame without knowledge of the entire signal. The resulting denoised
samples were saved for use by i-STAR for the listening test.

3.3. Sound quality rating

After evaluating each subject's understanding of IEEE sentences, the
sound quality of the IEEE sentences in noise (with and without SEDA
processing) was measured using the MUSHRA (MUltiple Stimuli with
Hidden Reference and Anchor) scaling test. The open source
MUSHRAM interface (Vincent, 2005) was used to conduct the experi-
ment. Subjects were presented with a reference sound, which was
speech in quiet, and were told that the quality of this sound should be
rated as 100 on a scale from 0 to 100. Subjects were also presented with
10 other variations of the sentence and were asked to scale the sound
quality of the speech in each of those variations along the same scale.
The variations consisted of the 8 speech in noise conditions previously
evaluated for intelligibility (i.e. SNRs of 0, 3, 6, and 9 dB with and
without SEDA processing), an unlabeled repetition of the reference
(speech in quiet) and a sample with only the background babble noise
used as an anchor. Subjects were allowed to listen to each sample as
many times as desired and similarly were also able to replay the re-
ference stimulus as desired to facilitate the comparison of the sound
qualities. Responses for each variation were entered by the subject
using a slider in the interface. When the subject was satisfied with his/
her rating of all of the samples, he/she would press a button to save all
of the values and proceed to the next set of sentences. The interface
used is presented in Fig. 11. The process was repeated for 5 different
sentences for each subject. The sentences used were randomly selected
for each subject from the 720 male speaker IEEE standard sentences.
Speech material was played in free field in a double-walled sound booth
at 65 dBa. Subjects were instructed to face the loudspeaker and were

Table 4
Subject information.

Subject Age Sex Etiology Ear Implantation Year Type of implant Strategy / noise reduction

M107 61 M Unknown Left 2013 MED-EL Concert - Flex 28 FS4
Right N/A N/A (Hearing Aid)a N/A

N103 60 F Genetic Left N/A N/A (Hearing Aid)a N/A
Right 2008 Cochlear CI24RE (CA) ACE

C106 39 M Unknown Left N/A N/A (Hearing Aid)a N/A
Right 2010 Advanced Bionics HiRes90K / HiFocus 1J HiRes-S with Fidelity 120 / ClearVoice

C114 70 F Meniere's Autoimmune Left N/A N/A (Hearing Aid)a N/A
Right 2014 Advanced Bionics HiRes90K / HiFocus MS HiRes-Optima-S / ClearVoice

C118 45 F Ushers Left 2010 Advanced Bionics HiRes90K / HiFocus 1J HiRes-P with Fidelity 120 / ClearVoice
Right N/A N/A (Hearing Aid)a N/A

N102 64 F Lyme Disease and head trauma Left N/A N/A (Hearing Aid)a N/A
Right 2013 Cochlear Freedom CI24RE CA ACE

C101 71 M Unknown Left N/A N/A (Hearing Aid)a N/A
Right 2012 Advanced Bionics HiRes90K / HiFocus 1J HiRes-P with Fidelity 120 / ClearVoice

a Subjects were instructed to remove their hearing aid devices and insert a foam earplug during the test.
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positioned approximately 1 m from the loudspeaker. Because subject
C118’s vision was insufficient to use the MUSHRAM interface, she was
instructed to scale the sounds orally.

4. Results

4.1. Speech in noise intelligibility

The percent of words correct for each condition is presented for
each subject in Fig. 12. As the test results show, the performance gen-
erally increases as a function of SNR.

Furthermore, performance with SEDA noise reduction was higher
for all subjects at all SNRs except for C101 at 0 dB SNR, where word
recognition was 0 for both processed and processed samples. There was,
however, a great deal of variability in the magnitude of the improve-
ment from SEDA noise reduction across subjects and SNRs. The average
improvement for 0, 3, 6, and 9 dB SNR were 7.19, 11.23, 17.19, and
15.96 percentage points respectively (bottom-right panel of Fig. 12). A
repeated measures two-way ANOVA detects main effects of noise re-
duction [F(1,6)=31.242, p< .001] and signal to noise ratio [F(3,18)=
21.090, p< .001]. Additionally, the interaction between signal to noise
ratio and noise reduction is significant [F(3,18)= 10.564, p< .001].
Post-hoc one-sample t-tests detected that the improvements were sig-
nificant at each SNR (SNR 0 dB: t(6)= 4.605, p= .00367; SNR 3 dB: t
(6)= 3.579, p= .0117; SNR 6 dB: t(6)= 5.816, p= .00113; SNR 9 dB:
t(6)= 6.384, p= .000695). All four post-hoc t-tests remain significant
after Type I error correction using Rom's method (Rom, 1990) which
determines that if the p-value for all comparisons is below the critical
alpha, then all comparisons are considered significant. Nevertheless,
there is still room for improvement with the SEDA noise reduction al-
gorithm. The ideal performance for a noise reduction algorithm would
be to produce performance equivalent to performance in quiet (as if the
all of the noise were removed without inflicting any distortion to the
original speech). However, even at the highest SNR tested (9 dB SNR),
performance was significantly below that of performance in quiet [t(6)
=11.664, p= .0000239] which is indicated by the purple dashed lines
in Fig. 12.

4.2. Sound quality

Sound quality ratings for each condition are shown for each subject
in Fig. 13. As the test results show, the sound quality generally increases
as a function of SNR. Furthermore, sound quality with SEDA noise re-
duction was higher for all subjects. The average increase in MUSHRA
scores for 0, 3, 6, and 9 dB SNR were 12.46, 11.02, 23.55, and 28.95
(bottom-right panel of Fig. 13). A repeated measures two-way ANOVA
detects main effects of noise reduction [F(1,6)= 200.070, p< .001]
and signal to noise ratio [F(3,18)= 36.195, p< .001]. Additionally, a
significant interaction between noise reduction and signal to noise ratio
was detected [F(3,18)= 3.189, p=.049]. After Type I error correction
using Rom's method (Rom, 1990), post-hoc one-sample t-tests detected
a significant improvement in sound quality at SNRs of 6 dB (t(6)
=7.089, p= .000395) and 9 dB (t(6)=6.176, p= .000828). However,
improvements in sound quality approached but failed to reach sig-
nificance for SNR 0 dB (t(6)= 2.289, p= .0621) and SNR 3 dB (t(6)
=2.932, p= .0262) after Type I error correction.

5. Discussion

Considering the particularly difficult nature of the babble noise
reduction for CI devices and limited number of previous works in this
field, babble noise reduction is a worthwhile area for CI research. SEDA
is an effort to address the babble problem for cochlear implant users. It
provides intelligibility and sound quality benefits for CI users in babble
noise environments by employing a new approach. SEDA uses a clas-
sifier which is specifically tuned for multi-talker babble. It also employs
a new wavelet-based approach combined with parallel denoising for
multi-talker babble noise reduction in cochlear implant devices.

The evaluation of SEDA suggests that it can improve both the in-
telligibility and sound quality of speech in the presence of multi-talker
babble for CI listeners. Although post-hoc tests showed an improvement
in intelligibility at all SNRs, after Type I error control, significant im-
provements in sound quality were only detected for SNRs of 6 and 9 dB.
Although SEDA was effective at 0 dB SNR, the improvements in in-
telligibility and sound quality increased with larger SNRs. The smaller
observed improvements in intelligibility at lower SNRs are expected to
be partially caused by floor effects at lower SNRs (e.g. C101 and C114)

Fig. 11. Capture of the user interface for the MUSHRA experiment.
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which cause the benefit of SEDA to be underestimated.
In designing of the experiment, it was decided that SEDA should be

tested against performance with the clinical settings to determine how
much additional benefit would be obtained by cochlear implant users.
One ramification of this decision was that all of the Advanced Bionics
users in this experiment (C101, C106, C114, and C118) already had a
noise reduction algorithm (ClearVoice Medium) in their maps.
Therefore, all benefits observed for these subjects in this study are in
addition to any potential benefits that were obtained from ClearVoice.
Had SEDA been evaluated for these subjects without additional noise
reduction, we would predict that the effect of SEDA would have been
greater, although it is possible that the effect might have been smaller.
While removing ClearVoice would have provided a better estimate of
the absolute capabilities of SEDA, keeping ClearVoice provides a better
estimate of the clinical relevance of SEDA. Nevertheless, one would not
expect to see a large difference between SEDA with and without
ClearVoice Medium as Holden et al. (2013) failed to detect an im-
provement of performance with multi-talker babble using ClearVoice
Medium. Note that other users did not use any noise reduction algo-
rithm in their Med-El or Cochlear devices (see Table 4).

While SEDA has been demonstrated to be effective, there are lim-
itations involved in the algorithm. Because SEDA is based on thresh-
olding, the quieter components of a signal are more likely to be re-
moved. Therefore, SEDA only works when the target speech is
noticeably louder than any of the other individual background talkers.
This can partially explain the poorer absolute performance observed at

lower SNRs. While not formally evaluated, we expect that performance
at SNRs below 0 dB would continue to degrade. Similarly, at a fixed
SNR, we expect that decreasing the number of talkers would reduce the
performance of the algorithm. Moreover, SEDA is less likely to perform
well when the noise has a high concentration of energy in a short
duration (e.g., burst noise). Further tests are required to investigate the
effectiveness of SEDA for different noise situations including stationary
noises (e.g. white noise), other non-stationary noises such as speech-
weighted noise and multi-talker babble with smaller number of talkers.

The tested version of SEDA has a relatively high latency but there
remains opportunity for improving the algorithm and optimizing the
parameters to decrease the latency of SEDA. Assuming tc, td and te are
the required processing times for an incoming frame Fin by the three
steps respectively, to maintain real time operation we should have

+ + ≤t t t tc d e f where tf is the duration of Fin. Moreover, to minimize
latency, given a fixed overlap between frames, tf should be as short as
possible. As the audio processing latency produces a discrepancy be-
tween audio cues and visual cues in real time applications, it is im-
portant to minimize the latency. For example, the current version of
SEDA has been evaluated with 50% overlapping Hanning windows and
frame duration of 128ms for sampling rate of 16,000 samples per
second (i.e., frame length of 2048 samples). This imposes a minimum
latency of 64ms due to the frame length. However, processing time of
the overlapping frames will further increase the total latency. This la-
tency may be problematic, especially when used as a front end to a
cochlear implant processor which has its own latency. Increased
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latencies can cause a disassociation between visual and auditory stimuli
(e.g. Stevenson et al., 2012). The frame length could be reduced to a
smaller number of samples to reduce latency. However, the effects of
shorter frame lengths on performance have yet to be evaluated. For
optimal results with a shorter time window, the SEDA classifier would
need to be re-optimized accordingly. Note that a smaller number of
TQWT levels (sub-bands) should be selected for shorter frames while
other TQWT parameters (Q factors and redundancy) could remain un-
changed.

Using different frame lengths for the classifier and denoising stages
also can potentially reduce the latency of SEDA. In the present im-
plementation, the frame length limitation is mainly due to the SEDA
classifier as the effectiveness of features degrades rapidly with shorter
frames. However, the denoising stage can be implemented using a
shorter frame length and might be less susceptible to the shortening of
frame length than the classifier. Because the frame length used for
denoising stage determines the SEDA latency, using shorter frames for
denoising and longer frames for classifier would reduce the SEDA la-
tency. However, further investigation is required to evaluate the effect
of reducing the frame length in the denoising stage on performance.
Note that having different frame lengths for classifier and denoising
stages requires modification of the SEDA algorithm.

Performance of the SEDA classifier might be enhanced for shorter
frames by using additional features which are sensitive to the level of
babble in speech, have a relatively low computational cost, and perform
well for short frames of the noisy speech. For example, kurtosis-based

features, as used in Hazrati et al. (2013), might be beneficial for a future
version of the SEDA classifier.

The evaluation of SEDA is promising for CI users, especially in the
context of previous work. Nevertheless, because of differences in sub-
ject population, difficulty of varying sentence corpuses, language, and
testing methods, it is inappropriate to directly compare results of SEDA
with other noise reduction algorithms. Further research in which each
of the above factors are controlled is needed if a direct comparison
between noise reduction algorithms is to be made.

The implementation of SEDA evaluated in the present manuscript
was implemented on a Windows computer in a sound booth. However,
for SEDA to be beneficial to cochlear implant users in their daily life,
SEDA needs to be implemented on a smaller platform. Ideally, SEDA
would be implemented directly into the sound processor. An alternative
would be to use a smartphone as an external pre-processor to clean up
the signal using SEDA and stream the signal into the sound processor.
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